Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: $(3n+2,5n+3)=(3n+2,2n+1)=(n+1,2n+1)=(n+1,n)=1$.
Các câu sau chứng minh tương tự.
a) Gọi d là ƯCLN(n+1;2n+3)
=>n+1 chia hết cho d và 2n+3 chia hết cho d
=>2(n+1) chia hết cho d hay 2n+2 chia hết cho d
=>(2n+3)-(2n+2) chia hết cho d
hay 1 chia hết cho d
=>d=1
=> phân số \(\dfrac{n+1}{2n+3}\) tối giản với mọi số tự nhiên n
b) Gọi d là ƯCLN(4n+8;2n+3)
=>4n+8 chia hết cho d và 2n+3 chia hết cho d
=>2(n+3) chia hết cho d hay 4n+6 chia hết cho d
=>(4n+8)-(4n+6) chia hết cho d
hay 2 chia hết cho d
Do 2n+3=2(n+1)+1 không chia hết cho 2=>d phải là số lẻ và 2 chia hết cho d =>d=1
=> phân số \(\dfrac{2n+3}{4n+8}\) tối giản với mọi số tự nhiên n
Bạn vào đây nhé: Câu hỏi của Nguyễn Đinh Huyền Mai - Toán lớp 6 | Học trực tuyến
a) \(\frac{n}{2n+1}\)
Gọi \(d=ƯCLN\left(n;2n+1\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow\left(2n+1\right)-2n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n;2n+1\right)=1\)
\(\Rightarrow\)Phân số \(\frac{n}{2n+1}\)là phân số tối giản
b) \(\frac{2n+3}{4n+8}\)
Gọi \(d=ƯCLN\left(2n+3;4n+8\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
Vì \(2n+3=\left(2n+2\right)+1=2\left(n+1\right)+1\)(không chia hết cho 2)
\(\Rightarrow d\ne2\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)
\(\Rightarrow\)Phân số \(\frac{2n+3}{4n+8}\)là phân số tối giản
Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )
n +1 = 2n + 2 (1) ; 2n+3*) (2)
Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1
vậy ta có đpcm
gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )
3n +2 = 15 n + 10 (1) ; 5n + 3 =15n + 9 (2)
lấy (!) - (2) ta được 15n + 10 - 15n - 9 = 1:d => d = 1
Vậy ta có đpcm
a. Muốn phân số n+1/2n+3 tối giản thì n+1 và 2n+3 có ƯCLN=1
Giả sử n+1 và 2n+3 có ước là a
=>n+1 chia hết cho a và 2n+3 chia hết cho
=>2(n+1) chia hết cho a và 2n+3 chia hết cho a
=>2n+2 chia hết cho a và 2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=> 1 chia hết cho a hay a thuộc Ư(1) = {1}
Vậy phân số n+1/2n+3 tối giản
Bây giờ mk bận, tối về giải tiếp nhé
a: Gọi d=ƯCLN(16n+5;6n+2)
=>16n+5 và 6n+2 chia hết cho d
=>48n+15-48n-16 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(2n+3;4n+8)
=>4n+8-4n-6 chia hết cho d
=>2 chia hết cho d
mà 2n+3 lẻ
nên d=1
=>ĐPCM
DPCM là j vậy bạn