Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Giải:
Đặt \(A=n^3+3n^2-n-3\) ta có
\(A=n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n^2-1\right)\left(n+3\right)=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)
Thay \(n=2k+1\left(k\in Z\right)\) ta được:
\(A=\left(2k+2\right)2k\left(2k+4\right)=\) \(2\left(k+1\right).2k.2\left(k+2\right)\)
\(=8\left(k+1\right)k\left(k+2\right)\)
Mà \(\left(k+1\right)k\left(k+2\right)\) là tích của \(3\) số tự nhiên nhiên tiếp nên chia hết cho \(6\) \(\Rightarrow A⋮8.6=48\)
Vậy \(n^3+3n^2-n-3\) \(⋮48\forall x\in Z;x\) lẻ (Đpcm)
\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.9-2^n.4+3^n-2^n\)
\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right):10\)
\(A=4m^3+9m^2-19m-30=4m^3-4m+9m^2-3m-12m-30\)
\(=4m\left(m^2-1\right)+3m\left(3m-1\right)-12m-30\)
\(=4m\left(m-1\right)\left(m+1\right)+3m\left(3m-1\right)-6\left(2m+5\right)\)
Ta có:
- \(-6\left(2m+5\right)\)chia hết cho 6 với mọi m.
- \(3m\left(3m-1\right)\)chia hết cho 6 với mọi m (Vì 3m và 3m-1 là 2 số tự nhiên liên tiếp nên tích chia hết cho 2 và 3m chia hết cho 3).
- \(4m\left(m-1\right)\left(m+1\right)\)chia hết cho 6 vì \(m\left(m-1\right)\left(m+1\right)\)là tích của 3 số tự nhiên liên tiếp.
A có các số hạng chia hết cho 6 nên A chia hết cho 6 với mọi m nguyên (ĐPCM).
\(A=3^2.3^{k+1}+3^{k+1}+2^2.2^{k+1}+2.2^{k+1}\)\(=3^{k+1}\left(3^3+1\right)+2^{k+1}\left(2^2+2\right)\)
\(A=28.3^{k+1}+6.2^{k+1}\)\(=6.\left(14.3^k+2^{k+1}\right)\) chia hết cho 6
3k+3 +3k+1+2k+3+2k+2=3k.9+3k.3+2k.8+2k.4=3k.12+2k.12=(3k+2K)12 chia het 6
Nếu m có dạng 3k thì m+3 chia hết cho 3, nếu m có dạng 3k-1 thì m-2 chia hết cho 3
a) \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(\Rightarrow\left(3^n\cdot3^2+3^n\right)-\left(2^n\cdot2^2+2^n\right)\)
\(\Rightarrow3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(\Rightarrow3^n\cdot10-2^n\cdot5\)
\(\Rightarrow3^n\cdot10-2^{n-1}\cdot\left(2\cdot5\right)\)
\(\Rightarrow10\left(3^n-2^n\right)\) chia hết cho 10
b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(\Rightarrow3^n\cdot3^3+3^n\cdot3+2^n\cdot2^3+2^n\cdot2^2\)
\(\Rightarrow3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)
\(\Rightarrow3^n\cdot30+2^n\cdot12\)
\(\Rightarrow3^n\cdot6\cdot5+2^n\cdot2\cdot6\)
\(\Rightarrow6\left(3^n\cdot5+2^n\cdot2\right)\) chia hết cho 6
\(3^{m+2}-2^{m+2}+3^m-2^m\left(m\in N\cdot\right)\)
\(=3^m.3^2-2^n.2^2+3^m-2^n=3^m.9-2^n.4+3^m-2^n\)
\(=3^m.9-2^n.4+3^m-2^n=3^m\left(9+1\right)-2^n\left(4+1\right)=3^m.10-2^n.5\)
\(=3^m.10-2^{n-1}.10=10\left(3^m-2^{n-1}\right)⋮10\left(m\inℕ^∗\right)\)