\(a,2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2020

Bài làm:

a) Ta có: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

luôn đúng

b) \(\left(a+b+c\right)^2\)

\(=\left[\left(a+b\right)+c\right]^2\)

\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)

\(=a^2+2ab+b^2+2ca+2bc+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca\)

4 tháng 8 2020

a) Ta có : \(2\left(a^2+b^2\right)-\left(a+b\right)^2=2a^2+2b^2-\left(a^2+2ab+b^2\right)\)

\(=2a^2+2b^2-a^2-2ab-b^2\)

\(=a^2-2ab+b^2\)

\(=\left(a-b\right)^2\ge0\)( đúng với mọi a,b )

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\left(đpcm\right)\)

Dấu " = " xảy ra <=> a = b = 0

b) \(VT=\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2\)

\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)

\(=a^2+2ab+b^2+2ac+2bc+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ac=VP\left(đpcm\right)\)

4 tháng 8 2020

Bài làm

a) Ta có: ( a - b + c )2 = [ a - ( b - c ) ]2 

= a2 - 2a( b - c ) + ( b - c )2 

= a2 - 2ab + 2ac + b2 - 2bc + c2 

= a2 + b2 + c2 + 2ac - 2ab - 2bc 

Mik làm mấy lần rồi nhưng vẫn ra kết quả như vậy, bạn xem lại đề nhé.

b) Ta có: a2 + b2 + c2 > ab + bc + ca

=> 2( a2 + b2 + c2 ) > 2( ab + bc + ca )

=> 2a2 + 2b2 + 2c2 > 2ab + 2bc + 2ca

=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca > 0

=> ( a2 + b2 + c2 ) + ( a2 + b2 + c2 - 2ab - 2bc - 2ca ) > 0

=> ( a2 + b2 + c2 ) + ( a - b - c )2 > 0 ( Luôn đúng )

Vậy a2 + b2 + c2 > ab + bc + ca ( đpcm ).

c) a2 + b2 + 1 > a + b + ab ( mik nghĩ cái a ở vế phải phải là a thôi chứ không phỉa a^2. bạn kiểm tra đề nha )

=> 2a2 + 2b2 + 2 > 2a + 2b + 2ab

=> 2a2 + 2b2 + 2 - 2a - 2b - 2ab > 0

=> ( a2 - 2ab + b2 ) + ( a2 - 2a + 1 ) + ( b2 - 2b + 1 ) > 0

=> ( a - b )2 + ( a - 1 )2 + ( b - 1 )2 > 0 ( luôn đúng )

Vậy a2 + b2 + 1 > a + b + ab ( đpcm )

4 tháng 8 2020

\(1,\left(a-b+c\right)^2=\left[\left(a-b\right)+c\right]^2\)

\(=\left(a-b\right)^2+2\left(a-b\right)c+c^2\)

\(=a^2+b^2+c^2-2ab-2bc-2ca\)

\(2,..2a^2+2b^2+2c^2-2ab-2ac-2bc\)

\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\)

\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Dấu "=" xảy ra khi a = b = c

3, Sửa đề : \(a^2+b^2+1\ge a+b+ab\)

Ta có : \(2a^2+2b^2+2-2a-2b-2ab\)

\(=\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\)

\(=\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)

\(\Rightarrow2a^2+2b^2+2\ge2a+2b+2ab\)

\(\Leftrightarrow a^2+b^2+1\ge a+b+ab\)

Dấu "=" xảy ra khi a = b = 1

7 tháng 8 2016

biến đổi vế trái :  a. \(\left(a+b\right)^2=a^2+2ab+B^2=VP\)

                          b. \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3=VP\)

                          c. \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=VP\)

                          xem 7 hằng đẳng thức đáng nhớ

7 tháng 8 2016

a)\(=\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)=a^2+ab+ab+b^2\)

\(=a^2+2ab+b^2\)

b)\(\left(a-b\right)^3=\left(a-b\right)\left(a-b\right)\left(a-b\right)=\left(a^2-ab-ab+b^2\right)\left(a-b\right)\)

\(=\left(a^2-2ab+b^2\right)\left(a-b\right)\)

\(=a^3-a^2b-2a^2b+2ab^2+ab^2-b^3\)

\(=a^3-3a^2b-3ab^2-b^3\)

c)\(\left(a+b+c\right)^2=\left(a+b+c\right)\left(a+b+c\right)\)

\(=a^2+ab+ac+ab+b^2+bc+ac+cb+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ac\)

30 tháng 8 2018

Ta có:\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca\)

\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)

\(=a^2+2ab+b^2+2ac+2bc+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca\) (đpcm)

30 tháng 8 2018

Ta có:\(\left(a+b+c\right)^2=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)

\(=a^2+2ab+b^2+2ac+2bc+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca\)

\(1,VT=2\left(a^3+b^3+c^3\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Ta có \(a^3+b^3\ge ab\left(a+b\right)\)

              \(b^3+c^3\ge bc\left(b+c\right)\)

            \(c^3+a^3\ge ca\left(c+a\right)\)

Cộng từng vế các bđt trên  ta được

\(VT\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Bây giờ ta cm:

\(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

Bất đẳng thức trên luôn đúng

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c

2 tháng 4 2020

Mấy bài này dễ mà, tách ra rồi Cauchy là xong hết =))

5 tháng 5 2017

Câu hỏi tương tự: Câu hỏi của Đinh Tuấn Việt - Toán lớp 8 | Học trực tuyến

19 tháng 7 2016

a) Ta có : \(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

Tương tự : \(b^2+1=\left(b+a\right)\left(b+c\right)\) ; \(c^2+1=\left(c+a\right)\left(c+b\right)\)

Suy ra \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)

Vậy \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=1\)

b) Ta có ; \(a^2+2bc-1=a^2+2bc-\left(ab+bc+ac\right)=a^2-ab+bc-ac=a\left(a-b\right)-c\left(a-b\right)\)

\(=\left(a-b\right)\left(a-c\right)\)

Tương tự : \(b^2+2ac-1=\left(a-b\right)\left(c-b\right)\) ; \(c^2+2ab-1=\left(a-c\right)\left(b-c\right)\)

Suy ra \(\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ab-1\right)=\left(a-b\right)^2.\left(c-a\right)^2.\left[-\left(b-c\right)^2\right]\)

Vậy : \(B=\frac{-\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)}=-1\)