\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) => hệ thức a2 =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có:

a + b/a - b=c+a/c-a =>(a+b)(c-a)=(a-b)(c-a)<=>ac-a^2+bc-ab=ac+a^2-bc-ab<=>2a^2=2bc=>a^2=bc

4 tháng 8 2019

Mình cần nói rõ chi tiết từ ac-a2+bc-ab = ac+a2-bc-ab, chứ không có ý định làm tắt luôn thành 2a2=bc :(

5 tháng 6 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\)a=bk , c=dk

Ta có:

\(\left(\frac{a+b}{c+d}\right)^2=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\)\(\frac{\left(b\left(k+1\right)\right)^2}{\left(d\left(k+1\right)\right)^2}=\frac{b^2\times\left(k+1\right)^2}{d^2\times\left(k+1\right)^2}=\frac{b^2}{d^2}\)( 1 )

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2\times k^2+b^2}{d^2\times k^2+d^2}\)\(\frac{b^2\times\left(k^2+1\right)}{d^2\times\left(k^2+1\right)}=\frac{b^2}{d^2}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)(dpcm)

5 tháng 6 2016

* Giả sử tất cả các tỷ lệ thức đều có nghĩa.

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\times\frac{b}{d}=\frac{b}{d}\times\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}=\frac{a^2}{c^2}=\frac{2ab}{2cd}\)

\(=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)(ĐPCM)

2 tháng 9 2019

ĐẶT K NHA

2 tháng 9 2019

\(Dat:\frac{A}{B}=\frac{C}{D}=k\Rightarrow A=Bk;C=Dk\)

\(\Rightarrow\frac{A^2+B^2}{C^2+D^2}=\frac{B^2\left(k^2+1\right)}{D^2\left(k^2+1\right)}=\frac{B^2}{D^2};\left(\frac{A-B}{C-D}\right)^2=\left(\frac{B\left(k-1\right)}{D\left(k-1\right)}\right)^2=\frac{B^2}{D^2}\Rightarrow dpcm\)

12 tháng 11 2017

=(a+b+c)-(a-b+c)/(a+b-c)-(a-b-c)=2b/2b=1

suy ra:a+b+c=a+b-c

a+b+c-a+b-c=0

2c=0;c=0

vây

12 tháng 11 2017

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)

Từ \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)

\(\Rightarrow\)\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)+\left(a-b+c\right)}{\left(a+b-c\right)+\left(a-b-c\right)}=\frac{2\left(a+c\right)}{2\left(a-c\right)}=\frac{a+c}{a-c}\)( 1 )

Từ \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)

\(\Rightarrow\)\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{2b}{2b}=1\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a+c}{a-c}=1\)

\(\Rightarrow a+c=a-c\)

\(\Rightarrow a+c-a+c=0\)

\(\Rightarrow2c=0\)

\(\Rightarrow c=0\)( đpcm )

6 tháng 6 2016

a) \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) =>\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)\(=\frac{a+b+a-b}{c+d+c-d}=\frac{2a}{2c}=\frac{a}{c}\)(1)

CMTT ta có: \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-\left(a-b\right)}{c+d-\left(c-d\right)}\)\(=\frac{a+b-a+b}{c+d-c+d}=\frac{2b}{2d}=\frac{b}{d}\)(2)

Từ (1) và (2) => \(\frac{a}{c}=\frac{b}{d}\left(=\frac{a+b}{c+d}\right)\)=>\(\frac{a}{b}=\frac{c}{d}\)(ĐPCM)

11 tháng 10 2017

khong giai b a

*a/b=c/d=k=>a=bk;c=dk

Thay a=bk vào 2a+3b/2a-3b=2bk+3b/2bk-3b=2k+3/2k-3

Tương tự thay c=dk vào 2c+3d/2c-3d=2dk+3d/2dk-3d=2k+3/2k-3

=>2a+3b/2a-3b=2c+3d/2c-3d

*a/b=c/d=>a/c=b/d=k

=>k^2=a^2/c^2=c^2/d^2=a^2-b^2/c^2-d^2 (1)

k^2=a/c.b/d=ab/cd (2)

Từ (1) và (2)=>ab/cd=a^2-b^2/c^2-d^2

*a/b=c/d=>a/c=b/d=k=a+b/c+d

=>k^2=(a+b/c+d)^2 

k^2=a^2/c^2=b^2/d^2=a^2+b^2/c^2+d^2

=>(a+b/c+d)^2=a^2+b^2/c^2+d^2

3 tháng 6 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\in R\right)\)thì a = bk ; c = dk .Ta có :

 \(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(1\right)\)

 \(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(2\right)\)

 \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(3\right)\)\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(4\right)\)

\(\left(\frac{a+b}{c+d}\right)^2=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\left(5\right)\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(6\right)\)

Từ (1) và (2) , (3) và (4) , (5) và (6) , ta suy ra 3 tỉ lệ thức cần chứng minh từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)

9 tháng 4 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\Rightarrow\hept{\begin{cases}\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\\\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\end{cases}}\)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

và \(\Rightarrow\hept{\begin{cases}\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\\\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\end{cases}}\)

\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)