Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{b}=\dfrac{c}{b}=k\)
\(\Rightarrow a=c.k;c=b.k\)
Suy ra:
\(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{\left(c.k\right)^2+\left(b.k\right)^2}{b^2+\left(b.k\right)^2}=\dfrac{k^2.\left(c^2+b^2\right)}{b^2.\left(k^2+1\right)}\)
\(=\dfrac{k^2.\left[\left(b.k\right)^2+b^2\right]}{b^2.\left(k^2+1\right)}=\dfrac{k^2.\left[b^2.\left(k^2+1\right)\right]}{b^2.\left(k^2+1\right)}=k^2\) (1)
\(\dfrac{a}{b}=\dfrac{c.k}{b}=\dfrac{b.k^2}{b}=k^2\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\)
Chúc học tốt!!
Bài 1:
a) \(\dfrac{x^2}{6}=\dfrac{24}{25}\)
\(\Leftrightarrow x^2.25=6.24\)
\(\Leftrightarrow x^2.25=144\)
\(\Leftrightarrow x^2=144:25\)
\(\Leftrightarrow x^2=5,76\)
\(\Leftrightarrow x=2,4\)
b) \(\dfrac{x-1}{x+5}=\dfrac{6}{7}\)
\(\Leftrightarrow7\left(x-1\right)=6\left(x+5\right)\)
\(\Leftrightarrow7x-7=6x+30\)
\(\Leftrightarrow7x=6x+30+7\)
\(\Leftrightarrow7x=6x+37\)
\(\Leftrightarrow7x-6x=37\)
\(\Leftrightarrow x=37\)
c) \(\dfrac{x-2}{x-1}=\dfrac{x+4}{x+7}\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=\left(x+4\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x-2\right).x+\left(x-2\right).7=\left(x+4\right).x-\left(x+4\right)\)
\(\Leftrightarrow x^2-2x+7x-14=x^2+4x-x-4\)
\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)
\(\Leftrightarrow x^2+5x-14+4-3x-x^2=0\)
\(\Leftrightarrow\left(x^2-x^2\right)+\left(5x-3x\right)-\left(14-4\right)=0\)
\(\Leftrightarrow2x-10=0\)
\(\Leftrightarrow2x=10\)
\(\Leftrightarrow x=10:2=5\)
Bài 2:
\(\dfrac{x}{7}=\dfrac{y}{13}\) và \(x+y=40\)
Ta có: \(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
Do đó \(\left\{{}\begin{matrix}\dfrac{x}{7}=2\Rightarrow x=14\\\dfrac{y}{13}=2\Rightarrow y=26\end{matrix}\right.\)
Vậy \(x=14;y=26\)
Bài 2: a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Leftrightarrow7x-21=5x+25\)
\(\Leftrightarrow7x-5x=21+25\)
\(\Leftrightarrow2x=46\)
\(\Rightarrow x=46:2=23\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)=63\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Rightarrow x^2=\left(\pm8\right)^2\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
2)a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow7\left(x-3\right)=5\left(x+5\right)\)
\(7x-21=5x+25\)
\(7x-5x+25=21\)
\(2x+25=21\)
\(2x=-4\Rightarrow x=-2\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(7.9=\left(x+1\right)\left(x-1\right)\)
\(63=x\left(x-1\right)+1\left(x-1\right)\)
\(63=x^2-x+x-1\)
\(x^2=63+1=64\)
\(x=\left\{\pm8\right\}\)
c) \(\dfrac{x+4}{20}=\dfrac{2}{x+4}\)
\(\Leftrightarrow\left(x+4\right)\left(x+4\right)=2.20=40\)
\(x\left(x+4\right)+4\left(x+4\right)=40\)
\(x^2+4x+4x+16=40\)
\(x^2+8x=40-16=24\)
\(x\left(x+8\right)=24\)
\(x\in\left\{\varnothing\right\}\)
d) \(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=\left(x-1\right)\left(x+3\right)\)
\(x\left(x-2\right)+2\left(x-2\right)=x\left(x+3\right)-1\left(x+3\right)\)
\(x^2-2x+2x-4=x^2+3x-x-3\)
\(\)\(x^2-4=x^2+2x-3\)
\(\Leftrightarrow x^2-x^2-2x+3=4\)
\(-2x+3=4\)
\(-2x=1\)
\(x=-\dfrac{1}{2}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)
Ta có:
Nếu:
\(\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\Leftrightarrow\left(2a+c\right)\left(b-d\right)=\left(a-c\right)\left(2b+d\right)\)
\(\Leftrightarrow2a\left(b-d\right)+c\left(b-d\right)=a\left(2b+d\right)-c\left(2b+d\right)\)
\(\Leftrightarrow2ab-2ad+bc-cd=2ab+ad-2bc+cd\)
\(\Leftrightarrow ad=bc\)
\(\Leftrightarrow\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\left(đpcm\right)\)
giả sử điều phải chứng minh là đúng thì:
\(\dfrac{\left(a+c\right)^2}{\left(a-c\right)^2}=\dfrac{\left(b+d\right)^2}{\left(b-d\right)^2}\\ \Rightarrow\left[\left(a+c\right)\left(b-d\right)\right]^2=\left[\left(a-c\right)\left(b+d\right)\right]^2\\ \Leftrightarrow\left(ab+bc-ad-cd\right)^2=\left(ab+ad-bc-cd\right)^2\\ \Leftrightarrow\left(ab+bc-ad-cd\right)^2-\left(ab+ad-bc-cd\right)^2=0\\ \Leftrightarrow\left(ab+bc-ad-cd+ab+ad-bc-cd\right)\left(ab+bc-ad-cd-ab-ad+bc+cd\right)=0\\ \Leftrightarrow\left(2ab-2cd\right)\left(2bc-2ad\right)=0\\ \Leftrightarrow\left(ab-cd\right)\left(bc-ad\right)=0\\ \Rightarrow\left[{}\begin{matrix}ab-cd=0\\bc-ad=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}ab=cd\\bc=ad\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{c}=\dfrac{d}{b}\\\dfrac{a}{b}=\dfrac{c}{d}\left(đúng\right)\end{matrix}\right.\)
do đó điều phải chứng minh là đúng
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)
\(\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)
Từ (1)(2) => đpcm
Á p dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
\(\Leftrightarrow\left(\dfrac{a}{c}\right)^2=\left(\dfrac{a-b}{c-d}\right)^2\Leftrightarrow\dfrac{a}{c}.\dfrac{b}{d}=\left(\dfrac{a-b}{c-d}\right)^2\)
suy ra đpcm
A= \(\dfrac{-3}{5}-\dfrac{-4}{5}+\dfrac{-9}{10}\)
A = \(\dfrac{-7}{10}\)
Theo tính chất của tỉ lệ thức, ta có thể viết: \(\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}\)
Cộng 1 vào 2 vế được: \(1+\dfrac{a^2}{b^2}=1+\dfrac{c^2}{d^2}\) hay \(\dfrac{a^2+b^2}{b^2}=\dfrac{c^2+d^2}{d^2}\)
Vậy \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2}{d^2}\)