Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BĐT\Leftrightarrow35\left(a^2+b^2+c^2\right)\ge9\left(a+b+c\right)^2+\frac{72abc}{a+b+c}\)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow35\left(a^2+b^2+c^2\right)9\left(a+b+c\right)^2+8\left(a^2+b^2+c^2\right)\)
Cần chứng minh rằng ; \(8\left(a^2+b^2+c^2\right)\ge\frac{72abc}{a+b+c}\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge9abc\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}=9abc\left(đpcm\right)\)
Vậy \(8\left(a^2+b^2+c^2\right)\ge\frac{72abc}{a+b+c}\)
\(\Rightarrow9\left(a+b+c\right)^2+8\left(a^2+b^2+c^2\right)\ge9\left(a+b+c\right)^2+\frac{72abc}{a+b+c}\)
\(\Rightarrow35\left(a^2+b^2+c^2\right)\ge9\left(a+b+c\right)^2+\frac{72abc}{a+b+c}\left(đpcm\right)\)
Chúc bạn học tốt !!!
Cho tam giác ABC nhọn, p là nửa chu vi, S là diện tích
CMR: \(\cot A+\cot B+\cot C\ge\frac{p^2}{3S}\)
\(cotA+cotB+cotC\ge\frac{p^2}{3S}\)
<=> \(cotA.S+cotB.S+cotC.S\ge\frac{p^2}{3}\)
MÀ \(S=\frac{1}{2}ab.sinC=\frac{1}{2}bc.SinA=\frac{1}{2}ac.SinB\)
=> \(\frac{1}{2}bc.cosA+\frac{1}{2}ab.cosC+\frac{1}{2}ac.cosC\ge\frac{p^2}{3}\)
Áp dụng công thức hàm cos ta có \(cosA=\frac{b^2+c^2-a^2}{2bc};cosB=\frac{a^2+c^2-b^2}{2ac};cosC=\frac{b^2+a^2-c^2}{2ab}\)
ĐPCM
<=> \(\frac{1}{4}\left(a^2+b^2-c^2\right)+\frac{1}{4}\left(b^2+c^2-a^2\right)+\frac{1}{4}\left(a^2+c^2-b^2\right)\ge\frac{\left(\frac{a+b+c}{2}\right)^2}{3}\)
<=> \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)
<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng
=> ĐPCM
Dấu bằng xảy ra khi a=b=c => Tam giác ABC đều
Vậy \(cotA+cotB+cotC\ge\frac{p^2}{3S}\)
A B C H K L
Gọi AH,BK,CL là 3 đường cao của \(\Delta\)ABC. Khi đó:
\(\cot B=\frac{BH}{HA},\cot C=\frac{CH}{HA}\) suy ra \(\cot B+\cot C=\frac{BC}{HA}\)
Chứng minh tương tự rồi cộng theo vế ta được:
\(2\left(\cot A+\cot B+\cot C\right)=\frac{BC}{HA}+\frac{CA}{KB}+\frac{AB}{LC}\)
\(=\frac{BC^2}{2S}+\frac{CA^2}{2S}+\frac{AB^2}{2S}\ge\frac{\left(BC+CA+AB\right)^2}{6S}=\frac{2p^2}{3S}\)(BĐT Schwartz)
Do đó \(\cot A+\cot B+\cot C\ge\frac{p^2}{3S}\)(đpcm).
Dấu "=" xảy ra khi và chỉ khi tam giác ABC là tam giác đều.
1/ Với mấy bài dạng này, u cứ tách theo kiểu coi x (hoặc y) là biến, cái còn lại là tham số.
\(A=2x^2+9y^2-6xy-6x-12y+2037\)
\(2A=4x^2-12x\left(y+1\right)+18y^2-24y+4074\)
\(2A=\left(2x\right)^2-2.2x.3\left(y+1\right)+9\left(y+1\right)^2+9y^2-42y+4065\)
\(2A=\left[2x-3\left(y+1\right)\right]^2+\left(3y-7\right)^2+4016\ge4016\) nên \(A\ge2008\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}2x-3\left(y+1\right)=0\\3y-7=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\)
Đây nhé
Đặt b + c = x ; c + a = y ; a + b = z
\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)
\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)
Thay vào PT đã cho ở đề bài , ta có :
\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)
( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y)
Bài toán hay dùng BĐT Vacs\(\sqrt{a^2-a+1\:}+\sqrt{b^2-b+1}+\sqrt{c^2-c+1}\ge a+b+c\)
Kết hợp giữa việc sử dụng phương pháp tiếp tuyến và tinh ý nhận ra bổ đề Vacs
Chú tth thử làm nhứ. Trong TKHĐ của t có sol rồi nha !!!!
2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).
Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Đẳng thức xảy ra khi a = b; c = 0.
Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)
BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)
Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)
Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)
Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)
\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):
\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)
\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)
\(\ge2\left(xy+yz+zx\right)\)
Vậy (1) đúng. BĐT đã được chứng minh.
Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.
Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(
Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:
Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)
khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)
Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)
Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$
\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)
\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)
Bài 4:
Ta có:Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên a+b-c>0,a+c-b>0,b+c-a>0.Do đó,áp dụng bất thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với x,y là các số dương
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{\left(a+b-c\right)+\left(a+c-b\right)}=\frac{4}{2a}=\frac{2}{a}\\\frac{1}{a+b-c+}+\frac{1}{b+c-a}\ge\frac{4}{\left(a+b-c\right)+\left(b+c-a\right)}=\frac{4}{2b}=\frac{2}{b}\\\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{\left(b+c-a\right)+\left(a+c-b\right)}=\frac{4}{2c}=\frac{2}{c}\end{matrix}\right.\)
\(\Rightarrow2\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Mà \(\left\{{}\begin{matrix}b+c-a=\left(a+b+c\right)-2a=2p-2a=2\left(p-a\right)\\a+c-b=\left(a+b+c\right)-2b=2p-2b=2\left(p-b\right)\\a+b-c=\left(a+b+c\right)-2c=2p-2c=2\left(p-c\right)\end{matrix}\right.\)
\(\Rightarrow2\left[\left(\frac{1}{2\left(p-a\right)}+\frac{1}{2\left(p-b\right)}+\frac{1}{2\left(p-c\right)}\right)\right]\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi a=b=c
5.
\(\sqrt{\frac{x}{y+z}}=\frac{x}{\sqrt{x\left(y+z\right)}}\ge\frac{2x}{x+y+z}\)
Tương tự: \(\sqrt{\frac{y}{x+z}}\ge\frac{2y}{x+y+z}\) ; \(\sqrt{\frac{z}{x+y}}\ge\frac{2z}{x+y+z}\)
Cộng vế với vế:
\(VT\ge\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Dấu "=" ko xảy ra nên \(VT>2\)
\(BĐT\Leftrightarrow35\left(a^2+b^2+c^2\right)\ge9\left(a+b+c\right)^2+\frac{72abc}{a+b+c}\)
Theo hệ quả của BĐT Cauchy :
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow35\left(a^2+b^2+c^2\right)\ge9\left(a+b+c\right)^2+8\left(a^2+b^2+c^2\right)\)
Ta cần chứng minh rằng : \(8\left(a^2+b^2+c^2\right)\ge\frac{72abc}{a+b+c}\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge9abc\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}=9abc\left(đpcm\right)\)
Vậy \(8\left(a^2+b^2+c^2\right)\ge\frac{72abc}{a+b+c}\)
\(\Rightarrow9\left(a+b+c\right)^2+8\left(a^2+b^2+c^2\right)\ge9\left(a+b+c\right)^2+\frac{72abc}{a+b+c}\)
\(\Rightarrow35\left(a^2+b^2+c^2\right)\ge9\left(a+b+c\right)^2+\frac{72abc}{a+b+c}\left(đpcm\right)\)
Chúc bạn học tốt !!!