Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right).4\)
\(=8\left(n+1\right)\) chia hết cho 8
\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)
b ) \(\left(2n+1\right)^2-1\)
\(=\left(2n+1-1\right)\left(2n+1+1\right)\)
\(=2n.\left(2n+2\right)\)
\(=2.2n\left(n+1\right)\)
\(=4n\left(n+1\right)\)
Ta có : \(n\left(n+1\right)\) là tích của hai số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)
\(\Rightarrow4n\left(n+1\right)⋮8\).
c ) Gọi 2 số lẻ liên tiếp là \(2n+1\) và \(2n-1\)
Ta có : \(\left(2n+1\right)^2-\left(2n-1\right)^2\)
\(=\left(2n+1+2n-1\right)\left(2n+1-2n+1\right)\)
\(=4n.2\)
\(=8n\) chia hết cho 8
Vậy .........
Vì có 3 số lẻ nên dư khi chia cho 8 chỉ có thể là 1, 3, 5, 7.
Ta chia thành 2 nhóm:
Nhóm 1: dư 1 và dư 7
Nhóm 2: dư 3 và dư 5
Có 2 trường hợp TH1: 3 số đã cho có 2 số thuộc 1 trong 2 nhóm trên.
Khi đó tổng của 2 số đó sẽ chia hết cho 8 (Vì tổng của 1 số dư 1 và 1 số dư 7 sẽ chia hết cho 8, cũng như tổng 1 số dư 3 và 5 cũng chia hết cho 8)
TH2: 3 số đã cho không thuộc 1 trong 2 nhóm trên. Khi đó có thể chắc chắn 1 điều là có 2 số cùng số dư. Khi đó hiệu của chúng sẽ chia hết cho 8.
Gọi 2 số chính phương lẻ là: 2a+1; 2b+1
ĐK: a, b ϵ N
Theo bài ra, ta có
\(\left(2a+1\right)^2+\left(2b+1^2\right)\)
= \(4a^2+4a+1+4b^2+4b+1\)
= \(4\left(a^2+a+b^2+b\right)+2\)
Vì \(4\left(a^2+a+b^2+b\right)⋮4\)
\(2:4\) dư 2
⇒\(4\left(a^2+a+b^2+b\right)+2:4\) dư 2
Mà số chính phương chia 4 dư 0 hoặc 1
⇒\(\left(2a+1\right)^2+\left(2b+1\right)^2\) không phải SCP
Vậy tổng bình phương của 2 số lẻ bất kì ko là số chính phương
4 số lẻ ltiếp là
2k+1;2k+3;2k+5;2k+7(k thuộc N)
tổng là:
2k+1+2k+3+2k+5+2k+7
=8k+16
=8(k+2)
Vậy tổng của 4 số lẻ liên tiếp thì hết cho 8
Ta đặt 4 số lẻ liên tiếp là a+1;a+3;a+5;a+7
Ta có: (a+1)+(a+3)+(a+5)+(a+7)
=a+1+a+3+a+5+a+7
=(a+a+a+a)+(1+3+5+7)
=4a+16
Mà: 16 chia hết cho 8
=> 4x+16 chia hết cho 8
=> Ta có kết luận: Tổng 4 số lẻ liên tiếp chia hết cho 8
bn vào olm.vn ik trong đấy có câu trả lời đấy!
gợi ý cho bn r đó nha !
nhớ like cho mik đấy!
Ta có \(m=\dfrac{3^p-1}{2}\cdot\dfrac{3^p+1}{4}=ab\) với \(\left(a;b\right)=\left(\dfrac{3^p-1}{2};\dfrac{3^p+1}{4}\right)\)
Vì \(a,b\) là các số nguyên lớn hơn 1 nên m là hợp số
Mà \(m=9^{p-1}+9^{p-2}+...+9+1\) và p lẻ nên \(m\equiv1\left(mod3\right)\)
Theo định lí Fermat, ta có \(\left(9^p-9\right)⋮p\)
Mà \(\left(p,8\right)=1\Rightarrow\left(9^p-9\right)⋮8p\Rightarrow m-1⋮\dfrac{9^p-9}{8}⋮p\)
Vì \(\left(m-1\right)⋮2\Rightarrow\left(m-1\right)⋮2p\Rightarrow\left(3^{m-1}-1\right)⋮\left(3^{2p}-1\right)⋮\dfrac{9^p-1}{8}=m\left(đpcm\right)\)
Câu hỏi của Bảo Bình Đáng Yêu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo link này nhé!