Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có đó bạn. Nếu bạn lấy bất kì số \(n\) nào có dạng \(10k\pm3\) (tức là chia 10 dư 3 hoặc dư 7) thì \(n^{10}+1\) sẽ chia hết cho 10. Ví dụ:
\(7=10.1-3\Rightarrow7^{10}+1=282475250⋮10\)
\(3n-3+5⋮n-1\)
\(\Leftrightarrow3\left(n-1\right)+5⋮n-1\)
có 3(n-1) chia hết cho n-1
\(\Rightarrow5⋮n-1\)
=> n-1 thuộc ước của 5
tức là:
n-1=5
n-1=-5
n-1=1
n-1=-1
mình xin lỗi mình đánh máy sai câu hỏi như này
A) n+7 chia hết cho n+2 ( với n khác 2 )
B) 3n+1 chia hết cho 2n+3
Ta suy ra điều phải chứng minh.
Lời giải:
$n^3+3n+1\vdots n+1$
$\Rightarrow (n^3+1)+3n\vdots n+1$
$\Rightarrow (n+1)(n^2-n+1)+3(n+1)-3\vdots n+1$
$\Rightarrow (n+1)(n^2-n+4)-3\vdots n+1$
$\Rightarrow 3\vdots n+1$
$\Rightarrow n+1\in \left\{1; 3\right\}$ (do $n+1$ là stn)
$\Rightarrow n\in \left\{0; 2\right\}$
Bài 2:
Theo đề, ta có: \(a\in BC\left(24;220\right)\)
mà a nhỏ nhất
nên a=1320
cmr là zì zậy nhỉ