K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2015

gọi hai số chẵn đó là 2a và 2a+2

=> 2a.(2a+2)chia hết cho 2              (1)

2a. (2a+2) = 2a.2a + 2a .2 = 4.a.a+4.a=4.(a.a+a)  

=>  2a(2a+2) chia hết cho 4                (2)

từ (1) và (2)  2a.(2a+2) chia hết cho 8

7 tháng 7 2015

gọi hai số chẵn đó là 2a và 2a+2

=> 2a.(2a+2)chia hết cho 2              (1)

2a. (2a+2) = 2a.2a + 2a .2 = 4.a.a+4.a=4.(a.a+a)  

=>  2a(2a+2) chia hết cho 4                (2)

từ (1) và (2) =>  2a.(2a+2)  ko chia het cho 3

11 tháng 11 2018

1.

\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)

Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5

Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4

Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120

2.(Tương tự)

3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16

Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)

Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.

4.

Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128

Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)

Do đó tích chia hết cho 3*128=384

5.

\(m^3-m=m\left(m-1\right)\left(m+1\right)\)

Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

Nên \(m^3-m\)chia hết cho 2*3=6

3 tháng 11 2015

a. Hai số chẵn liên tiếp có dạng là 2k và 2(k+1) với k là số nguyên .
Tích hai số này là 4k(k+1) . Ta có k(k+1) luôn chia hết cho 2 => 4k(k+1) luôn chia hết cho 8 => đpcm

b . Gọi ba số chẵn liên tiếp là 2a,2a + 2 , 2a + 4 ( a \(\in\) N ) Xét tích :
                2a.(2a + 2).(2a + 4) = 8a(a + 1)(a + 2)

  Chứng minh rằng a(a + 1)(a + 2) chia hết cho 3 và chia hết cho 2.
c. Ta có 384 = 2\(^7.3\)

Tích 4 số chẵn liên tiếp sẽ có dạng : \(2^4.n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\)
Ta cần c/m tích \(n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\) chia hết cho \(2^3.3\) hay chia hết cho 8 và cho 3( vì 8,3 là số nguyên tố cùng nhau)

L-I-K-E nha ! Mình đã bỏ thời gian ra giải cho bạn rồi đấy

3 tháng 11 2015

a. Gọi 2 số chẵn liên tiếp đó là 2a ; 2a + 2 
=> 2a.(2a+2)chia hết cho 2 (1)
2a. (2a+2) = 2a.2a + 2a .2 = 4.a.a+4.a=4.(a.a+a) 
=> 2a(2a+2) chia hết cho 4 (2)
từ (1) và (2)  2a.(2a+2) chia hết cho 8
Mấy bài kia tương tự

18 tháng 7 2016

1/ Do trong 6 số nguyên liên tiếp bất kì luôn có 3 số chẵn gồm 2 số chia hết cho 2 và ít nhất 1 số chia hết cho 4 nên tích 6 số nguyên liên tiếp luôn chia hết cho 16 (1)

Do trong 6 số nguyên liên tiếp luôn có 2 số chia hết cho 3 => tích 6 số nguyên liên tiếp luôn chia hết cho 9 (2)

Do trong 6 số nguyên liên tiếp luôn có ít nhất 1 số chia hết cho 5 => tích 6 số nguyên liên tiếp luôn chia hết cho 5 (3)

Từ (1); (2); (3) do 16; 9; 5 nguyên tố cùng nhau từng đôi một nên tích 6 số nguyên liên tiếp luôn chia hết cho 16 x 9 x 5 hay 720 (đpcm)

2/ Do trong 3 số chẵn liên tiếp luôn có 2 số chia hết cho 1 và ít nhất 1 số chia hết cho 4 => tích của chúng chia hết cho 16

Do trong 3 số chẵn liên tiếp luôn có 1 số chia hết cho 3 nên tích của chúng chia hết cho 3

=> tích 3 số chẵn liên tiếp chia hết cho 2; 4; 6; 8; 12; 16; 24; 48

NM
11 tháng 1 2021

trong hai số chẵn liên tiếp chắc chắn có một số chia hết cho 4

số còn lại chia hết cho 2 do đó

tích của hai số này chia hết cho 8 nhé

11 tháng 1 2021

Gọi hai số chãn liên tiếp là 2k ; 2k+2 ( k là số tự nhiên )

Ta có : 

\(2k.\left(2k+2\right)=4k^2+4k=4k.\left(k+1\right)\)

Vì tích hai số chẵn liên tiếp luôn chia hết cho 2 

Nên \(k\left(k+1\right)⋮2\)\(\Rightarrow4k\left(k+1\right)⋮2.4=8\)

10 tháng 8 2015

           

2 tháng 8 2015

Gọi 2 số chẵn liên tiếp là 2n, 2n +2 ( n thuộc N ) 
Ta có : Tích của chúng là A(n) = 2n .( 2n + 2 )
= 2 .n .2 .( n + 1 )
= 2 .2 .n .( n + 1 )
= 4n .( n +1 )
Ta có : 4 chia hết cho 4
n .( n + 1 ) chia hết cho 2 ( vì n ; n + 1 là 2 số tự nhiên liên tiếp )
=> A(n) chia hết cho 8
Vậy tích 2 số chẵn liên tiếp chia hết cho 8 .