Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Biến đổi: \(q(x)=9.81^x+15.25^x+2.8^x+8.64^x\)
Lại có:
\(\left\{\begin{matrix} 81\equiv 13\pmod {17}\rightarrow 81^k\equiv 13^k\pmod {17}\\ 25\equiv 8\pmod {17}\rightarrow 25^k\equiv 8^k\pmod {17}\\ 64\equiv 13\pmod {17}\rightarrow 64^k\equiv 13^k\pmod {17}\end{matrix}\right.\)
Do đó, \(q(x)\equiv 9.13^k+15.8^k+2.8^k+8.13^k\pmod {17}\)
\(\Leftrightarrow q(x)\equiv 17.13^k+17.8^k\equiv 0\pmod {17}\)
\(\Leftrightarrow q(x)\vdots 17\) (đpcm)
1. a,\(A=x^2-2x+5=x^2-2.x.1+1^2-1+5\)
\(=\left(x-1\right)^2+4\)
Do \(\left(x-1\right)^2\ge0\) với \(\forall x\) \((\)dấu "=" xảy ra \(\Leftrightarrow x=1)\)
\(\Rightarrow\left(x-1\right)^2+4\ge4\) hay \(A\ge4\) \((\) dấu "=" xảy ra \(\Leftrightarrow x=1)\)
Vậy Min A=4 tại x=1
b,\(B=2x^2-6x=2\left(x^2-3x\right)\)
\(=2.\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\right)\)
\(=2.\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)
Do \(2.\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))
\(\Rightarrow2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\) hay \(B\ge-\dfrac{9}{2}\)
(dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))
Vậy Min B = \(-\dfrac{9}{2}\) tại x=\(\dfrac{3}{2}\)
Bài 2
a,\(A=6x-x^2+3=-\left(x^2-6x-3\right)\)
\(=-\left(x^2-2.x.3+3^2-9-3\right)\)
\(=-\left[\left(x-3\right)^2-12\right]\)
\(=-\left(x-3\right)^2+12\)
Do \(-\left(x-3\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=3)
\(\Rightarrow-\left(x-3\right)^2+12\le12\) hay \(A\le12\) (dấu "=" xảy ra <=> x=3)
Vậy Max A =12 tại x=3
b,\(B=x-x^2+2=-\left(x^2-x-2\right)\)
\(=-\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\)
Do \(-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\) hay \(B\le\dfrac{9}{4}\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))
Vậy Max B=\(\dfrac{9}{4}\) tại x=\(\dfrac{1}{2}\)
c,\(C=5x-x^2-5=-\left(x^2-5x+5\right)\)
\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}+5\right]\)
\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{5}{4}\right]\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\)
Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{5}{2}\))
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\) hay \(C\le\dfrac{5}{4}\) (dấu ''='' xảy ra <=> x=\(\dfrac{5}{2}\))
Vậy Max C=\(\dfrac{5}{4}\) tại x=\(\dfrac{5}{2}\)
Mình làm tiếp phần của Dũng Nguyễn nha.
b) \(4x-x^2-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-2.x.2+4+1\right)\)
\(=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-2\right)^2-1\le-1\)
\(\Rightarrow-\left(x-2\right)^2-1< 0\) với mọi x
Vậy \(4x-x^2-5< 0\) với mọi x
c) \(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x
Vậy \(x^2-x+1>0\) với mọi x
d) \(-x^2+2x-4\)
\(=-\left(x^2-2x+4\right)\)
\(=-\left(x^2-2x+1+3\right)\)
\(=-\left(x-1\right)^2-3\)
Vì \(-\left(x-1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-1\right)^2-3\le-3\)
\(\Rightarrow-\left(x-1\right)^2-3< 0\)
Vậy \(-x^2+2x-4< 0\) với mọi x
Lời giải:
Ta có:
\(x^{8n}+x^{4n}+1=(x^{4n})^2+2.x^{4n}+1-x^{4n}\)
\(=(x^{4n}+1)^2-x^{4n}=(x^{4n}+1+x^{2n})(x^{4n}+1-x^{2n})\)
Xét \(x^{4n}+1+x^{2n}=(x^{2n})^2+2.x^{2n}+1-x^{2n}=(x^{2n}+1)^2-x^{2n}\)
\(=(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)
Do đó:
\(x^{8n}+x^{4n}+1=(x^{4n}+1-x^{2n})(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)
\(\Rightarrow x^{8n}+x^{4n}+1\vdots x^{2n}+x^n+1\) (đpcm)
b)
Sửa đề: \(x^{3m+1}+x^{3n+2}+1\vdots x^2+x+1\)
Đặt \(A=x^{3m+1}+x^{3n+2}+1\)
\(\Leftrightarrow A=x(x^{3m}-1)+x+x^2(x^{3n}-1)+x^2+1\)
\(\Leftrightarrow A=x[ (x^3)^m-1]+x^2[(x^3)^n-1]+(x^2+x+1)\)
Khai triển:
\((x^3)^m-1=(x^3)^m-1^m=(x^3-1).T=(x-1)(x^2+x+1)T\)
(đặt là T vì phần biểu thức đó không quan trọng)
\(\Rightarrow (x^3)^m-1\vdots x^2+x+1\)
Tương tự, \((x^3)^n-1\vdots x^2+x+1\)
Do đó, \(A=x(x^{3m}-1)+x^2(x^{3n}-1)+x^2+x+1\vdots x^2+x+1\)
Ta có đpcm.
a) Ta có:
\(x^2+4x+5\)
\(=x^2+2.x.2+4+1\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+1>0\forall x\)
\(\Rightarrow x^2+4x+5>0\forall x\)
b) Ta có:
\(x^2-x+1\)
\(=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow x^2-x+1>0\forall x\)
c) Ta có:
\(12x-4x^2-10\)
\(=-\left(4x^2-12x+10\right)\)
\(=-\left[\left(2x\right)^2-2.2x.3+9+1\right]\)
\(=-\left(2x-3\right)^2-1\)
Vì \(-\left(2x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(2x-3\right)^2-1< 0\forall x\)
\(\Rightarrow12x-4x^2-10< -1\)
Với n = 0 thì đúng.
Dễ thấy khi \(x^a+\frac{1}{x^a}=x^{-a}+\frac{1}{x^{-a}}\)nên ta chỉ cần chứng minh nó đúng với n \(\in\)Z+
Với n = 2 thì \(\Rightarrow x^2+\frac{1}{x^2}+2=\left(x+\frac{1}{x}\right)^2\)là số nguyên
\(\Rightarrow x^2+\frac{1}{x^2}\)là số nguyên.
Giả sử nó đúng đến n = k
\(\Rightarrow\hept{\begin{cases}\frac{1}{x^{k-1}}+x^{k-1}\\x^k+\frac{1}{x^k}\end{cases}}\)đều là số nguyên.
Ta chứng minh với n = k + 1 thì
xk+1 + \(\frac{1}{x^{k+1}}\)cũng là số nguyên
Ta có:
\(\left(x+\frac{1}{x}\right)\left(x^k+\frac{1}{x^k}\right)=x^{k+1}+\frac{1}{x^{k+1}}+x^{k-1}+\frac{1}{x^{k-1}}\)
\(\Rightarrow x^{k+1}+\frac{1}{x^{k+1}}\)là số nguyên.
Vậy ta có điều phải chứng minh là đúng.
Đặt A= x2 + 6x + 10
=> A= x2 + 2.3x + 32 +1
A = (x+3)2 +1 ≥ 1
=> A > 0 với mọi x (đpcm)
a, \(-x^2+2x-7=-\left(x^2-2x+1\right)+1-7=-\left(x-1\right)^2-6\)
Vì \(-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-6< 0\) => đpcm
b, \(-x^2-6x-10=-\left(x^2+6x+9\right)+9-10=-\left(x+3\right)^2-1\)
Vì \(-\left(x+3\right)^2\le0\Rightarrow-\left(x+3\right)^2-1< 0\) => đpcm
c, \(-x^2-3x-5=-\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{9}{4}-5=-\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{4}\)
Vì \(-\left(x+\dfrac{3}{2}\right)^2\le0\Rightarrow-\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{4}< 0\) => đpcm
d, \(-x^2+4xy-5y^2-8y-18=-\left(x^2-4xy+5y^2+8y+18\right)\)
\(=-\left[\left(x^2-4xy+4y^2\right)+\left(y^2+8y+16\right)\right]-1\)
\(=-\left[\left(x-2y\right)^2+\left(y+4\right)^2\right]-1=-\left(x-2y\right)^2-\left(y+4\right)^2-1\)
Vì \(-\left(x-2y\right)^2\le0;-\left(y+4\right)^2\le0\Rightarrow-\left(x-2y\right)^2-\left(y+4\right)^2-1< 0\)
=> đpcm
Lời giải:
Đặt \(x=2t+1\). Khi đó, \(q(x)=10^{6x+2}+10^{6t+4}+1\)
Ta thấy: \(10^6\equiv 1\pmod {91}\). Do đó:
\(\left\{\begin{matrix} 10^{6k}\equiv 1\pmod {91}\\ 10^{6t}\equiv 1\pmod {91}\end{matrix}\right.\)
\(\Rightarrow q(x)\equiv 10^2+10^4+1\equiv 10101\equiv 0\pmod {91}\)
Do đó, \(q(x)\vdots 91\) với \(x\in\mathbb{N}\) lẻ.
mod là gì vậy bn?