K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2020

Ta có: \(\left(m-1\right)m\left(m+1\right)⋮3\)mà (m,3)=1 nên

\(\left(m-1\right)\left(m+1\right)⋮3\)(1)

m là số nguyên tố lớn hơn 3 nên m là số lẻ , m-1, m+1 là 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp có 1 số là bội của 4 nên tích của chúng chia hết cho 8(2)

Từ 1,2 => (m-1)(m+1) chia hết cho 2 số nguyên tố cùng nhau 3 và 8

Vậy (m-1)(m+1) chia hết cho 24

7 tháng 7 2015

2.

Nếu 3 số x,y,z chia 3 khác số dư thì x+y+z chia hết cho 3
và (x-y),(y-z),(z-x) không chia hết cho 3
hay (x-y)(y-z)(z-x) không chia hết cho 3
=> (1) vô lí

+,Nếu trog 3 số 2 số có cùng số dư thì giả sử y,z cùng dư; x khác dư
khi đó x+y+z không c/h cho 3 ;
x-y và z-x không chia hết cho 3; y-z chia hết cho 3
=>(x-y).(y-z).(z-x) chia hết cho 3

=> (1) vô lí

Tóm lại 3 số x,y,z chia 3 cùng dư
khi đó (x-y),(y-z),(z-x) cùng chia hết cho 3
=> đpcm

1 tháng 7 2015

1, a và a+2 là số nguyên tố => a , a+2 đều là số lẻ => a+1 là số chẵn => a+1 chia hết cho 2 (1)
2. a và a+2 là số nguyên tố nên không chia hết cho 3
+Nếu a chia 3 dư 1 thì a+2 chia hết cho 3 (loại)
+Nếu a chia 3 dư 2 thì a+2 chia 3 dư 1 (nhận) => a+1 chia hết cho 3 (2)

Từ (1) và (2) suy ra a+1 chia hết cho 6

12 tháng 11

ta có: p là số nguyên tố lớn hơn 3 ⇔ (p;3)=1.

        vì p; p+1; p+2 là 3 số tự nhiên liên tiếp.

⇒ p, p+1, p+2 có 1 trong 3 số chia hết cho 3.

mà (p;3)=1 nên p+1; p+2 có 1 số chia hết cho 3.

Vậy p+1,p+2 có 1 số chia hết cho 3.

 

31 tháng 5 2018

hóng bài giải câu 1 quá

6 tháng 9 2016

Mình nghĩ là đề bài thế này : Chứng minh rằng: Nếu P là số nguyên tố lớn hơn 3 thì (P-1).(P+1) chia hết cho 24
                      BÀI GIẢI
P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 và 3 
Ta có : P không chia hết cho 2 
=> P - 1 và P + 1 là 2 số chẵn liên tiếp => ( P - 1 )( P + 1 ) chia hết cho 8 ( 1 )'
Mặt khác : P không chia hết cho 3 
Nếu P = 3k + 1 thì P - 1 chia hết cho 3k => ( P - 1 )( P + 1 ) chia hết cho 3 ( 2 )
Từ ( 1 ) và ( 2 ) => ( P - 1 )( P + 1 ) chia hết cho 8 và chia hết cho 3 mà ( 8 ; 3 ) = 1 => ( P - 1 )( P + 1 ) chia hết cho 24.