\(\overline{ab}+\overline{cd}⋮11\)

Nhanh lên nha m.n ! ai nhanh mik tk cho :&...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

aaaa = 1111

Câu dưới không biết

K mk nha

*Mio*

30 tháng 9 2018

a , \(aaaa=a.1111\)

Mà \(1111⋮11\)

\(\Rightarrow aaaa⋮11\)

b, +, \(ababab=ab.10101\)

Mà \(10101⋮3\)

\(\Rightarrow ababab⋮3\)

+, \(ababab=ab.10101\)

Mà \(10101⋮7\)

\(\Rightarrow ababab⋮7\)

+, \(ababab=ab.10101\)

Mà \(10101⋮13\)

\(\Rightarrow ababab⋮13\)

23 tháng 7 2017

ai giúp mk mk tc cho 3 cái

24 tháng 9 2017

C: Dấu hiệu chia hết cho 11 : 

1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11

Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11

Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11 

Suy ra abcdeg chia hết cho 11 

C2 : Ta có

abcdeg = ab . 10000 = cd . 100 + eg

=  ( 9999ab )  +  ( 99cd )+ ( ab + cd + eg ) 

Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11

 Suy ra : abcdeg chia hết cho 11

( cách nào cũng đúng nha ) 

6 tháng 11 2018

NaNa Đề bài sai rồi bạn êy

24 tháng 3 2017

mình không muốn vào math nhiều lên mình bỏ dấu gạch trên đầu nhá

vì a là số chính phương => \(a\in\left\{1;4;9\right\}\)

+Nếu a=1 => ad=16 => d=6=> \(c\in\left\{1;3\right\}\)

             -Nếu c=1 => abcd=1b16 => vô lý vì không có số chính phương nào như vậy

             -Nếu c=3 => abcd=1b36 => b=9

+Nếu a=4 => ad=49 => d=9 => c=4 => abcd=4b49 (loại)

+Nếu a=9 => ad=9d (vô lý)

4 tháng 10 2016

Bài này không khó lắm nha bạn ^^

Ta có : \(\overline{abcd}=100\overline{ab}+\overline{cd}=200\overline{cd}+\overline{cd}=201\overline{cd}\)(vì ab = 2.cd)

201 chia hết cho 67 => 201cd (có gạch đầu) chia hết cho 67 => abcd chia hết cho 67

 

4 tháng 10 2016

Mk trả lời rồi bạn ạ!

4 tháng 10 2016

Ta có:

\(\overline{abcd}=100.\overline{ab}+\overline{cd}\)

\(=100.2.\overline{cd}+\overline{cd}\)

\(=200.\overline{cd}+\overline{cd}\)

\(=201.\overline{cd}⋮67\)

Vậy nếu \(\overline{ab}=2.\overline{cd}\) thì \(\overline{abcd}⋮67\)

18 tháng 2 2017

Ta có: \(\overline{abcdeg}\) = 10000.\(\overline{ab}\) + 100.\(\overline{cd}\) + \(\overline{eg}\)

= (9999.\(\overline{ab}\) + 99.\(\overline{cd}\) ) + ( \(\overline{ab}\) + \(\overline{cd}\) + \(\overline{eg}\))

Theo bài ra, ta có: \(\overline{ab}\) + \(\overline{cd}\) + \(\overline{eg}\) \(⋮\) 11

Vì 9999.\(\overline{ab}\) + 99.\(\overline{cd}\) \(⋮\) 11 và \(\overline{ab}\) + \(\overline{cd}\) + \(\overline{eg}\) \(⋮\) 11

nên (9999.\(\overline{ab}\) + 99.\(\overline{cd}\) ) + ( \(\overline{ab}\) + \(\overline{cd}\) + \(\overline{eg}\)) \(⋮\) 11

Vậy \(\overline{abcdeg}\) \(⋮\) 11

18 tháng 1 2018

Ta có : \(\overline{abcdeg}=10000.\overline{ab}+100.\overline{cd}+\overline{eg}\)

\(=\left(9999+1\right).\overline{ab}+\left(99+1\right).\overline{cd}+\overline{eg}\)

\(=9999.\overline{ab}+\overline{ab}+99.\overline{cd}+\overline{cd}+\overline{eg}\)

\(=11.909.\overline{ab}+ab+11.9.\overline{cd}+\overline{cd}+\overline{eg}\)

\(11.909.\overline{ab}⋮11;11.9.\overline{cd}⋮11;\overline{ab}+\overline{cd}+\overline{eg}⋮11\) nên \(\overline{abcdeg}⋮11\)