K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

Ta có n(n+3)(n+6)(n+9)+81

=n(n+9)(n+3)(n+6)+81

=(n^2+9n)(n^2+9n+18)+81

=(n^2+9n+9−9)(n^2+9n+9+9)+81

=(n^2+9n+9)2−92+81

=(n^2+9n+9)^2

⇒n(n+3)(n+6)(n+9)+81 là scp (đpcm)

 

11 tháng 9 2021

Ta có \(n\left(n+3\right)\left(n+6\right)\left(n+9\right)+81\)

\(=n\left(n+9\right)\left(n+3\right)\left(n+6\right)+81\)

\(=\left(n^2+9n\right)\left(n^2+9n+18\right)+81\)

\(=\left(n^2+9n+9-9\right)\left(n^2+9n+9+9\right)+81\)

\(=\left(n^2+9n+9\right)^2-9^2+81\)

\(=\left(n^2+9n+9\right)^2\) 

\(\Rightarrow n\left(n+3\right)\left(n+6\right)\left(n+9\right)+81\) là scp 

 

AH
Akai Haruma
Giáo viên
5 tháng 2

Lời giải:

Gọi $d=ƯCLN(n+1, 4n^2-2n-5)$

$\Rightarrow n+1\vdots d; 4n^2-2n-5\vdots d$

$\Rightarrow 4(n+1)^2-(4n^2-2n-5)\vdots d$
$\Rightarrow 10n+9\vdots d$

$\Rightarrow 10(n+1)-1\vdots d$

Mà $n+1\vdots d$ nên $1\vdots d\Rightarrow d=1$

Vậy $n+1, 4n^2-2n-5$ nguyên tố cùng nhau. Để $(n+1)(4n^2-2n-5)$ là scp thì bản thân mỗi số $n+1, 4n^2-2n-5$ là scp.

Đặt $n+1=a^2; 4n^2-2n-5=b^2$

$\Rightarrow 4(a^2-1)^2-2(a^2-1)-5=b^2$

$\Leftrightarrow 4a^4-8a^2+4-2a^2+2-5=b^2$

$\Leftrightarrow 4a^4-10a^2+1=b^2$

$\Leftrightarrow 16a^4-40a^2+4=4b^2$
$\Leftrightarrow (4a^2-5)^2-21=4b^2$

$\Leftrightarrow 21=(4a^2-5)^2-(2b)^2=(4a^2-5-2b)(4a^2-5+2b)$

Đến đây là dạng phương trình tích cơ bản, chỉ cần xét các TH để tìm ra $a,b$