Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n^3+5n=n^3-n+6n=n.(n^2-1)+6n=n.(n-1).(n+1)+6n=(n-1).n.(n+1)+6n
vì (n-1).n.(n+1) la 3 so lien tiep luon chia het cho 6 và 6nchia het cho 6
suy ra ĐPCM
Bài 2:
Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)
1:
\(n^2+4n+3\)
\(=n^2+3n+n+3\)
\(=\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
Vì k+1;k+2 là hai số nguyên liên tiếp
nên \(\left(k+1\right)\left(k+2\right)⋮2\)
=>\(4\left(k+1\right)\left(k+2\right)⋮8\)
hay \(n^2+4n+3⋮8\)
2: \(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)
=>\(k\left(k+1\right)\left(k+2\right)⋮6\)
=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)
hay \(n^3+3n^2-n-3⋮48\)
5n+2 : 3
Suy ra 5n : 3 dư 1
252 chia 3 cũng dư 1 ( 1 số chia 3 dư 1 hay 2 thì nâng lên lũy thừa bậc 2 chia 3 sẽ dư 1)
252=3k+1
5n=3k+1
252+5n=3k+1+3k+1=6k+2
Có 6k+2 chia hết cho 3, nhưng 2 ko chia hết cho 3 nên.....
Câu A hơi khó
ai giải đúng tôi tick
Thì tại nó chia hết cho 6