Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
(n,6) = 1 => n phải là số lẻ ( nếu n chẵn thì ( n,6) = 2 )
=> n - 1 và n + 1 là 2 số chẵn liên tiếp
=> ( n - 1 )(n + 1 ) chia hết cho 8
(n,6) = 1 => n không chia hết cho 3
=> n sẽ có dạng là 3k +1 ; 3k + 2 ( k thuộc Z )
Với n = 3k +1 => n -1 = 3k + 1 -1 = 3k chia hết cho 3 => (n - 1)(n+1) chia hết cho 3
Với n = 3k + 2 => n + 1 = 3k + 2 +1 = 3k+ 3 chia hết cho 3 => ( n -1 )(n +1) chia hết cho 3
Với cả 2TH => ( n-1)(n+1) chia hết cho 3
Mà (8,3)= 1 => (n-1)(n+1) chia hết cho 24 ( đpcm)
ta có \(\left(n-1\right).n.\left(n+1\right)⋮3\) mà UCLN (3,n) = 1
nên \(\left(n-1\right).\left(n+1\right)⋮3\) (1)
n là số nguyên tố lớn hơn 3 nên n là số lẻ, p - 1 và p + 1 là hai số chẵn liên tiếp
Trong số hai số chẵn liên tiếp , có một số là bội của 4 nên tích chúng chia hết cho 8 (2)
Từ (1) và (2) suy ra \(\left(n-1\right).\left(n+1\right)⋮3và8\)
Mà UCLN (3,8) = 1
nên \(\left(n-1\right).\left(n+1\right)⋮24\)
\(A=\left(n-1\right)\left(n+1\right)\left(n^2\right)\left(n^2+1\right)\)
\(A=\left(n-1\right)n\left(n+1\right).n\left(n^2+1\right)\left(I\right)\)
\(A=\left[\left(n-1\right)\left(n+1\right).n^2\right]\left(n^2-4+5\right)\)
\(=\left(n-1\right)\left(n+1\right).n^2\left(n^2-2^2\right)+5\left(n-1\right)\left(n+1\right).n^2\)
\(=\left(n-1\right)\left(n+1\right).n^2\left(n-2\right)\left(n+2\right)+5\left(n-1\right)\left(n+1\right).n^2\)
\(=\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right).n^2+5\left(n-1\right)\left(n+1\right).n^2\left(II\right)\)
1)với (I) A là tích của 3 số tự nhiên liên tiếp => chia hết cho 2 &3
2) với bửu thức (II) A là tổng hai số hạng
số hạng đầu là tích của 5 số tự nhiên liên tiếp=> chia hết cho 5
số hạng sau hiển nhiên chia hết cho 5 do có thừa số 5
KL
Với (I) A chia hết cho 2&3
Với (II) A chia hết cho 5
(I)&(II)=> điều bạn muốn tìm
Giải :
Theo bài ra ta có :
P= n(n+1)(2n+1)
P= n(n+1)(n+2+n-1)
P= n(n+1)(n+2)+(n-1)(n+1)n
Ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 \(\Rightarrow\) P chia hết cho 6 ( ĐPCM )
Ta có:
\(P=n\left(n+1\right)\left(2n+1\right)\)
\(P=n\left(n+1\right)\left(n+2+n-1\right)\)
\(P=n\left(n+1\right)\left(n+2\right)+\left(n-1\right)\left(n+1\right).n\)
Từ đó, ta nói 3 số tự nhiên liên tiếp là 1 số chia hết cho 2
Chia hết cho 3 => P chia hết cho 6 (ĐPCM)
<3
Đặt \(A=n(n+1)(2n+1)\)
Nếu $n$ chẵn thì $A$ chẵn \(\Rightarrow A\vdots 2\)
Nếu $n$ lẻ thì $n+1$ chẵn, do đó $A$ chẵn \(\Rightarrow A\vdots 2\)
Vậy $A$ luôn chia hết cho $2$ $(I)$
Nếu $n$ chia hết cho $3$ thì $A$ chia hết cho $3$
Nếu $n$ chia $3$ dư $1$ thì $2n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$
Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$
Vậy $A$ luôn chia hết cho $3$ $(II)$
Từ $(I),(II)$ kết hợp với $(2,3)=1$ suy ra \(A\vdots (2.3=6)\) (đpcm)
Nguyễn Huy TúAkai Haruma