\( \in\)Q mà S=\(u\sqrt[3]{3}+v\sqrt[3]{9}\in Q\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2018

\(A=\dfrac{u-v}{\sqrt{u}+\sqrt{v}}-\dfrac{\sqrt{u^3}+\sqrt{v^3}}{u-v}\)

\(=\sqrt{u}-\sqrt{v}-\dfrac{u\sqrt{u}+v\sqrt{v}}{\left(\sqrt{u}-\sqrt{v}\right)\left(\sqrt{u}+\sqrt{v}\right)}\)

\(=\sqrt{u}-\sqrt{v}-\dfrac{u-\sqrt{uv}+v}{\left(\sqrt{u}-\sqrt{v}\right)\left(\sqrt{u}+\sqrt{v}\right)}\)

\(=\sqrt{u}-\sqrt{v}-\dfrac{u-\sqrt{uv}+v}{\sqrt{u}-\sqrt{v}}\)

\(=\dfrac{\left(\sqrt{u}-\sqrt{v}\right)\sqrt{u}-\left(\sqrt{u}-\sqrt[]{v}\right)\sqrt{v}-\left(u-\sqrt{uv}+v\right)}{\sqrt{u}-\sqrt{v}}\)

\(=\dfrac{u-\sqrt{uv}-\sqrt{uv}+v-u+\sqrt{uv}-v}{\sqrt{u}-\sqrt{v}}\)

\(\Leftrightarrow\)\(-\dfrac{\sqrt{uv}}{\sqrt{u}-\sqrt{v}}\)

16 tháng 8 2018

mình chưa hiểu bài giải này ạ

22 tháng 2 2018

@Lightning Farron

Ta có: \(B=21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)^2-15\sqrt{15}\)

\(=21\cdot\left[2+\sqrt{3}+3-\sqrt{5}+2\sqrt{\left(2+\sqrt{3}\right)\left(3-\sqrt{5}\right)}\right]-6\cdot\left[2-\sqrt{3}+3+\sqrt{5}+2\cdot\sqrt{\left(2-\sqrt{3}\right)\left(3+\sqrt{5}\right)}\right]-15\sqrt{15}\)

\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{\left(4+2\sqrt{3}\right)\left(6-2\sqrt{5}\right)}\right)-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\sqrt{\left(4-2\sqrt{3}\right)\left(6+2\sqrt{5}\right)}\right]-15\sqrt{15}\)

\(=21\cdot\left[5+\sqrt{3}-\sqrt{5}+\left(\sqrt{3}+1\right)\left(\sqrt{5}-1\right)\right]-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\left(\sqrt{3}-1\right)\left(\sqrt{5}+1\right)\right]-15\sqrt{15}\)

\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{15}-\sqrt{3}+\sqrt{5}-1\right)-6\cdot\left(5-\sqrt{3}+\sqrt{5}+\sqrt{15}+\sqrt{3}-\sqrt{5}-1\right)-15\sqrt{15}\)

\(=21\cdot\left(4+\sqrt{15}\right)-6\left(4+\sqrt{15}\right)-15\sqrt{15}\)

\(=84+21\sqrt{15}-24-6\sqrt{15}-15\sqrt{15}\)

\(=60\)

13 tháng 8 2020

Giúp e câu a nữa ạ

4 tháng 7 2019

b1. a)

Gỉa sử căn bậc 2 + căn bậc 3 lớn hơn hoặc bằng căn bậc 10

=> ( căn bậc 2 + căn bậc 3 )2 lớn hơn hoặc bằng căn bậc 102

2+ 2 * căn bậc 3 + 3 lớn hơn hoặc bằng 10

5 + 2 căn 6 lớn hơn hoặc bằng 10

2 căn 6 lớn hơn hoặc bằng 5

( 2 căn 6 )2 lớn hơn hoặc bằng 52

4 * 6 lớn hơn 25

24 lớn hơn hoặc bằng 25 (sai)

Vậy căn bậc 2 + căn bậc 3 nhỏ hơn căn bậc 10

15 tháng 6 2018

8)a) \(\left(x^2-9\right)\sqrt{2-x}=x\left(x^2-9\right)\)

\(\Leftrightarrow\left(x^2-9\right)\sqrt{2-x}-x\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x^2-9\right)\left(\sqrt{2-x}-x\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x\le2\\\left[{}\begin{matrix}x=\pm3\\\left\{{}\begin{matrix}x>0\\x^2+x-2=0\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le2\\\left[{}\begin{matrix}x=\pm3\\\left\{{}\begin{matrix}x\ge0\\\left(x-1\right)\left(x+2\right)=0\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x=-3\) hoặc x=1

Vậy nghiệm của pt là:...

16 tháng 6 2018

Giúp em các bài đăng đi ạ.

Câu 1:

a) Ta có: \(-2\sqrt{3}=-\sqrt{12}\)

\(-\sqrt{14}< -\sqrt{12}\)

nên \(-\sqrt{14}< -2\sqrt{3}\)

b) Ta có: \(2\sqrt{3}=\sqrt[3]{24\sqrt{3}}\)

\(3\cdot\sqrt[3]{2}=\sqrt[3]{54}\)

\(\sqrt[3]{24\sqrt{3}}< \sqrt[3]{54}\)

nên \(2\sqrt{3}< 3\cdot\sqrt[3]{2}\)

c) Ta có: \(3+\sqrt{3}=\sqrt{3}\cdot\left(\sqrt{3}+1\right)\)

\(3\sqrt{3}=\sqrt{3}\cdot3\)

\(\sqrt{3}\cdot\left(\sqrt{3}+1\right)>\sqrt{3}\cdot3\)

nên \(3+\sqrt{3}>3\sqrt{3}\)

Bài 1​: Với mọi số x, y. Chứng minh rằng: a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \) b) \(x^2+5y^2-4xy+2x-6y+3>0\) Bài 2: Với mọi số thực x, a. Chứng minh rằng: \(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\) Bài 3: Cho \(a, b, c, d \in R\) và \(b< c < d\). Chứng minh rằng: a) \((a+b+c+d)^2>8(ac+bc)\) b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\) Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\)....
Đọc tiếp

Bài 1​: Với mọi số x, y. Chứng minh rằng:

a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \)
b) \(x^2+5y^2-4xy+2x-6y+3>0\)

Bài 2: Với mọi số thực x, a. Chứng minh rằng:

\(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\)

Bài 3: Cho \(a, b, c, d \in R\)\(b< c < d\). Chứng minh rằng:

a) \((a+b+c+d)^2>8(ac+bc)\)
b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\)

Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\). CMR:

\((p^2-a^2-b^2)(q^2-c^2-d^2)\le(pq-ac-bd)^2\)

Bài 5: \((a_1b_1+a_2b_2)^2\le(a_1^2+a_2^2)(b_1^2+b_2^2)\) dấu bằng xảy ra khi nào?

Bài 6: Cho a>0. Chứng minh rằng:

\(\sqrt{a+\sqrt{a+....+\sqrt{a}}}<\dfrac{1+\sqrt{1+4a}}{2}\)

Bài 7: \(y=\dfrac{x+1}{x^2+x+1}\). Tìm cực trị của y.

Bài 8: Cho \(0\le x, \) \(y\le1 \)\(x+y=3xy\). CMR: \(\dfrac{3}{9}\le \dfrac{1}{4(x+y)}\le \dfrac{3}{8}\)

Bài 9: Cho \(0\le x, \)\(y\le1 \). CMR: \((2^x+2^y)(2^{-x}+2^{-y})\ge \dfrac{9}{2}\)

Bài 10: Ba số thực a, b, c thỏa: \(a^2+b^2+c^2=2\), \(ab+bc+ca=1\) CMR: \(a,b,c \in [\dfrac{3}{4},\dfrac{4}{3}]\)

1
4 tháng 6 2018

@Phùng Khánh Linh

@Aki Tsuki

@Nhã Doanh

@Akai Haruma

@Nguyễn Khang

13 tháng 6 2019

\(A=2\sqrt{5}-\sqrt{45}+2\sqrt{20}=2\sqrt{5}-\sqrt{3^2.5}+2\sqrt{2^2.5}=2\sqrt{5}-3\sqrt{5}+4\sqrt{5}=3\sqrt{5}\)

\(B=\left(\sqrt{18}-\frac{1}{2}\cdot\sqrt{32}+12\sqrt{2}\right):\sqrt{2}=\left(3\sqrt{2}-\frac{1}{2}\cdot4\sqrt{2}+12\sqrt{2}\right):\sqrt{2}\)

\(=13\sqrt{2}:\sqrt{2}=13\)

\(C=\left(\sqrt{12}+2\sqrt{27}-3\sqrt{3}\right)\cdot\sqrt{3}=\left(2\sqrt{3}+6\sqrt{3}-3\sqrt{3}\right)\cdot\sqrt{3}=5\sqrt{3}\cdot\sqrt{3}=15\)

\(D=\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}=-\sqrt{5}+15\sqrt{2}\)