Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số nguyên tố \(p\) lớn hơn 3 có dạng \(3k+1\) hoặc \(3k+2\). Dạng nào thì \(\left(p-1\right)\left(p+1\right)\) cũng chia hết cho 3.
Số \(p\) lớn hơn bằng 5 nên có dạng \(4k+1\) hoặc \(4k+3\). Dạng nào thì trong 2 số \(p-1\) và \(p+1\) có 1 số chia hết cho 4 và số còn lại chẵn nên tích chia hết cho 8.
Vậy \(\left(p-1\right)\left(p+1\right)\) chia hết cho 24
câu 2: ta có 8p(8p+1)(8p+2) chia hết cho 3
=>16p(8p+1)(4p+1) chia het cho 3
mà 16 không chia hết cho 3,p và 8p+1 là snt >3 nên không chia hết cho 3
=>4p+1 chia hết cho 3
Ta có p - 1 p p + 1 ⋮ 3 mà (p, 3) = 1 nên
p - 1 p + 1 ⋮ 3 (1)
p là số nguyên tố lớn hơn 3 nên p là số lẽ, p – 1 và p + 1 là hai số chẳn liên tiếp , có một số là bội của 4 nên tích của chúng chia hết cho 8 (2)
Từ (1) và (2) suy ra (p – 1)(p + 1) chia hết cho 2 nguyên tố cùng nhau là 3 và 8
Vậy (p – 1)(p + 1) chia hết cho 24.
Ta có : (p-1)(p+1) = p2 - 1
Vì p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3. Suy ra : p2 không chia hết cho 3
\(\Rightarrow\)p2 chia 3 dư 1 (Vì p2 là số chính phương)
\(\Rightarrow\)p2 -1 \(⋮\)3
Vì p là số nguyên tố lớn hơn 3 nên p không chia hết cho 2. Suy ra p-1\(⋮\)2 và p+1\(⋮\)2.
\(\Rightarrow\)(p-1)(p+1) là tích của 2 số tự nhiên liên tiếp
Do đó: (p-1)(p+1) \(⋮\)8
Vì (p-1)(p+1) chia hết cho 3 và 8 nên (p-1)(p+1) \(⋮\)24 (đpcm)
Ví dụ : p là 5 thì (p-1)(p+1) = (5-1)(5+1)=4.6=24 .
Vì (5-1)(5+1) (tức 24) chia hết cho 24 → các SNT P lớn hơn 3 thì (p-1)(p+1) chia hết cho 24
Tick nha !
Một số chia hết cho 24 là một số chia hết cho 4,6
Mà chia hết cho 6 là chia hết cho 2 và 3
Theo đề bài thì P>3
Thì (P-1).(P+1) sẽ có 3 số hạng là:(P-1);P và(P+1)
=>(P-1)(P+1) sẽ chia hết cho 3
P là số nguyên tố lớn hơn 3 nên P là số lẻ(P không thể là 2)
Mà P là số lẻ thì (P-1) hoặc (P+1) là số chẵn
Hiệu của (P+1) - (P-1) =2
Thì một trong hai số (P-1) hay (P+1) sẽ chia hết cho 4
=>P thuộc SNT và >3 thì chắc chắn (P-1)(P+1) chia hết cho 24
p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) => (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) => (p - 1)(p + 1) chia hết cho 24. (đpcm)