![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi 2n -1,2n ,2n+1 là 3 số nguyên liên tiếp (n>2)
Ta có 2n-1 là số nguyên tố lớn hơn 3
=>2n-1 không chia hết cho 3
2n không chia hết cho 3 (2n -1,2n ,2n+1 là 3 số nguyên liên tiếp)
=> 2n+1 chia hết cho3 (1)
Vì n>2 => 2 n+1 > 3 (2)
Từ (1) và (2) => 2 n+1 là hợp số(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Do \(n>2\)
=> \(2^n>2^2=4\) ma 4 > 3
=>\(2^n>3\)
=>\(2^n=\begin{cases}3k+1\\3k+2\end{cases}\)
Neu \(2^n=3k+2\)
=>\(2^n+1=3k+2+1=3k+3⋮3\) ( trai nguoc voi de bai )
=>\(2^n=3k+1\)
=> \(2^n-1=3k+1-1=3k⋮3\)
Vay \(2^n-1\) la hop so
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10
Ta có 3n+2-2n+2+3n-2n
= 3n.9-2n.4+3n-2n
= 3n(9+1)-2n(4+1)
= 3n.10-2n.5=3n.10-2n-1.10
Nhận thấy 3n.10 chia hết cho 10 với mọi số nguyên dương n; 2n-1.10 chia hết cho 10 với mọi số nguyên dương n
=> 3n+2-2n+2+3n-2n chia hết cho 10 với mọi số nguyên dương n
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{P}{m-1}=\frac{m+n}{p}\) dk tồn tại \(VT>0\Rightarrow m>1\)
\(\Leftrightarrow p^2=\left(m+n\right)\left(m-1\right)\)(*)
VT là bp số nguyên tố VP xẩy ra các trường hợp
TH1: p=(m+n)=(m-1)=> n=-1 (loại n tự nhiên)
TH2: Một trong hai số phải =1 có m>1=> m+n>1
=> m-1=1=> m=2
\(\Rightarrow P^2=\left(n+2\right)\left(2-1\right)=n+2\Rightarrow dpcm\)
VT là bp số nguyên tố vp xẩy ra các trường hợp
TH1: p={m+n}={m-1}=>n-1{loai n tu nhien}
TH2:mot trong 2 so phai =1 co m>1=>m+n>=>m-1=1=>m2
chúc bạn làm tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
2) Ta có: \(S=\frac{3x-8}{x-5}=\frac{3x-15+7}{x-5}=\frac{3\left(x-5\right)+7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}\) \(=3+\frac{7}{x-5}\)
Để S là số nguyên \(\Leftrightarrow\frac{7}{x-5}\in Z\)
\(\Leftrightarrow x-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Nếu x - 5 = 1 thì x = 6
Nếu x - 5 = -1 thì x = 4
Nếu x - 5 = 7 thì x = 12
Nếu x - 5 = -7 thì x = -2
Vậy \(x=\left\{-2;4;6;12\right\}\)