K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

Xét : 3^n+2 + 3^n = 3^n-1 . ( 3^3+3) = 3^n-1 . 30 chia hết cho 10 ( vì n nguyên dương nên n-1 >= 0 )

2^n+2 + 2^n = 2^n-1.(2^3+2) = 2^n-1.10 chia hết cho 10

=> 3^n+2 + 3^n - 2^n+2 - 2^n chia hết cho 10

=> ĐPCM

Tk mk nha

24 tháng 2 2018

\(3^{n+2}-2^{n+2}+3^n-2^n=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\) ( Do n nguyên dương nên n - 1 không âm )

\(=10\left(3^n-2^{n-1}\right)\) chia hết cho 10

13 tháng 10 2018

vào câu hỏi tương tự đi

13 tháng 10 2018

Bài này quen quen nhể:)) 

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\)\(3^n.3^2-2^{n-1}.2^3+3^n-2^{n-1}.2\)

\(=\)\(\left(3^n.3^2-3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)

\(=\)\(3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\)

\(=\)\(3^n.10-2^{n-1}.10\)

\(=\)\(10\left(3^n-2^n\right)⋮10\) ( đpcm ) 

Chúc bạn học tốt ~ 

18 tháng 9 2016

\(3^{n+2}-2^{n+2}+3^n-2^n\\ =3^n.3^2+3^n-\left(2^{n+2}+2^n\right)\\ =3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2^1\right)\)

\(=3^n.10-2^{n-1}.10\\ =10\left(3^n-2^{n-1}\right)⋮10\)

18 tháng 1 2017

Ta có \(3^{n+2}-2^{n+2}+3^n-2^n\)

=>\(3^n.3^2+3^n-\left(2^{n+2}+2^n\right)\)

=>\(3^n.\left(3^2+1\right)-2^{n-1}.\left(2^3+2\right)\)

=>\(3^n.10-2^{n-1}.10\)

=>\(10.\left(3^n-2^{n-1}\right)\)

Ta thay a là 10; b là \(3^n-2^{n-1}\)

Ta có \(a⋮10\)=>\(a.b⋮10\)

=>\(10.\left(3^n-2^{n-1}\right)\)\(⋮\)10

19 tháng 9 2015

\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.9-2^n.4+3^n-2^n\)

\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right):10\)

3 tháng 2 2017

Đặt A=\(3^{n+2}-2^{n+2}+3^n-2^n\)

=\(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

=\(3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)

=\(3^n.10-2^n.5\)

Có 10 chia hết cho 10 =>\(3^n.10\)chia hết cho 10 (1)

\(2^n\)luôn chia hết cho 2 =>\(2^n.5\)chia hết cho 10 (2)

Từ (1) và (2) =>\(\left(3^n.10-2^n.5\right)\)chia hết cho 10

=>A chia hết cho 10

=>\(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10 (đpcm)

22 tháng 10 2017

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n\times10-2^n\times5\)

\(=3^n\times10-2^{n-1}\times2\times5\)

\(=3^n\times10-2^{n-1}\times10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

Đến đây bn kết nốt

Chúc bn học tốtbanhbanhbanhbanhbanh

20 tháng 10 2015

Bạn vào câu hỏi tương tự nha Ngọc Mai

28 tháng 3 2020

2) \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=2^n.3^2-2^n.2^2+3^n-2^n\)

\(=2^n.9+2^n.4+3^n-2^n\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)⋮10\left(đpcm\right)\)

28 tháng 3 2020

1) \(x+2y=3xy+3\)

\(\Rightarrow3xy+3-x-2y=0\)

\(\Rightarrow3xy-x+3-2y=0\)

\(\Rightarrow18xy-6x+18-12y=0\)

\(\Rightarrow6x\left(3y-1\right)+4-12y=-14\)

\(\Rightarrow6x\left(3y-1\right)-4\left(3y-1\right)=-14\)

\(\Rightarrow\left(6x-4\right)\left(3x-1\right)=-14\)

Bạn tự phân tích ra rồi tìm x, y nhé!