Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{u}{v}=\frac{2}{3}\)
\(\Rightarrow\frac{u}{v}=\frac{2}{3}\Rightarrow\frac{u}{2}=\frac{v}{3}\)
Vậy \(\frac{u}{2}=\frac{v}{3}\)
\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{\left(u+2\right)-\left(u-2\right)}{\left(v+3\right)-\left(v-3\right)}=\frac{4}{6}=\frac{2}{3}\)
\(\Rightarrow\frac{u+2}{v+3}=\frac{2}{3}=\frac{u+2-2}{v+3-3}=\frac{u}{v}\Rightarrow\frac{u}{v}=\frac{2}{3}\)
Cách của bạn kia là cách chứng minh tương đương.Mình nghĩ nó ko hay cho lắm vì phải dựa vào đpcm mà suy luận.
Mình lí luận ngược nha :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{u}{2}=\frac{v}{3}\Rightarrow\frac{u}{v}=\frac{2}{3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\Rightarrow\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
Ta có:
\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
<=> \(\left(u+2\right)\left(v-3\right)=\left(u-2\right)\left(v+3\right)\)
<=> \(uv+2v-3u-6=uv-2v+3u-6\)
<=> \(2v-3u=3u-2v\)
<=> \(2v+2v=3u+3u\)
<=> \(4v=6u\)
<=> \(2v=3u\)
<=> \(\frac{u}{2}=\frac{v}{3}\)
Ta có:
\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
\(\Leftrightarrow\left(u+2\right)\left(v-3\right)=\left(u-2\right)\left(v+3\right)\)
Câu 1b sai rồi nhé cậu!
4k . 5k = 20
=> 20.k = 20
=> k = 20 : 20 = 1
Câu 2: n= 12
Do A=\(\frac{\left(2x2\right)^6x\left(2x3\right)^6}{3^6x2^6}=2^{12}\)
Câu 3:
a) \(\frac{2}{3}-4.\left(\frac{1}{2}+\frac{3}{4}\right)\)
\(=\frac{2}{3}-4.\frac{5}{4}\)
\(=\frac{2}{3}-5\)
\(=-\frac{13}{3}.\)
b) \(3:\left(\frac{3}{2}\right)^2+\frac{1}{9}.\sqrt{36}\)
\(=3:\frac{9}{4}+\frac{1}{9}.6\)
\(=\frac{4}{3}+\frac{2}{3}\)
\(=2.\)
Chúc bạn học tốt!
Ta có \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(=\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
\(=\frac{x-1-\left(2y-4\right)+3z-9}{2-6+12}\)
\(=\frac{x-1-2y+4+3z-9}{8}\)
\(=\frac{\left(x-2y+3z\right)-6}{8}=\frac{14-6}{8}=\frac{8}{8}=1\)
Có \(\frac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\)
\(\frac{y-2}{3}=1\Rightarrow y-2=3\Rightarrow y=5\)
\(\frac{z-3}{4}=1\Rightarrow z-3=4\Rightarrow z=7\)
\(\frac{a}{b}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2\)\(=\frac{a^2+b^2}{b^2+d^2}\)\(\)
Ta có: \(\frac{a^2+b^2}{b^2+d^2}\)\(=\left(\frac{a}{b}\right)^2\)
\(\Rightarrow\frac{a^2+b^2}{b^2+d^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{d}=\frac{a}{d}\)
\(\Rightarrow\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\)
Có : \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
\(\Leftrightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\)
Theo tính chất dãy tỉ số , có :
\(\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{u+2+u-2}{v+3+v-3}=\frac{u+2-u+2}{v+3-v+3}\)
\(\Rightarrow\frac{2u}{2v}=\frac{4}{6}\)
\(\Leftrightarrow\frac{u}{v}=\frac{2}{3}\Leftrightarrow\frac{u}{2}=\frac{v}{3}\)
Ta có:
\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
<=> (u+2).(v-3)=(u-2).(v+3)
<=>uv+2v-3u-6=uv-2v+3u-6
<=>2v-3u=3u-2v
<=>2v+2v=3u+3u
<=>4v=6u
<=>2v=3u
<=>\(\frac{u}{2}=\frac{v}{3}\)