Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d/ \(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)
e/ \(\Leftrightarrow a^6+b^6+a^5b+ab^5\ge a^6+b^5+a^4b^2+a^2b^4\)
\(\Leftrightarrow a^5b-a^4b^2+ab^5-a^2b^4\ge0\)
\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)
\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)
f/ \(\frac{a^6}{b^2}+a^2b^2\ge2\sqrt{\frac{a^8b^2}{b^2}}=2a^4\) ; \(\frac{b^6}{a^2}+a^2b^2\ge2b^4\)
\(\Rightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge2a^4+2b^4-2a^2b^2\)
\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^4+b^4-2a^2b^2\right)\)
\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^2-b^2\right)^2\ge a^4+b^4\)
a/ \(VT=a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\)
\(VT=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2\)
\(VT\ge6\sqrt[6]{a^6b^6c^6}=6\left|abc\right|\ge6abc\)
Dấu "=" xảy ra khi \(a=b=c=1\)
b/ \(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)
c/ \(\Leftrightarrow\frac{a^3+b^3}{2}\ge\frac{a^3+b^3+3a^2b+3ab^2}{8}\)
\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b\)
\(VT\ge\sum\left(\dfrac{a^3}{2a+b+c}\right)=\sum\left(\dfrac{a^3}{\sum a+a}\right)=\sum\dfrac{a^3}{3+a}\)
Ta có BĐT phụ :
\(\dfrac{a^3}{a+3}\ge\dfrac{11a-7}{16}\)(*)
\(\Leftrightarrow\left(16a+21\right)\left(a-1\right)^2\ge0\) (luôn đúng với mọi a>0)
Áp dụng BĐT (*) ta có :
\(\sum\dfrac{a^3}{3+a}\ge\dfrac{11\sum a-21}{16}=\dfrac{33-21}{16}=\dfrac{12}{16}=\dfrac{3}{4}\)
nhầm rồi , mình sorry , \(VT\ge\sum\left(\dfrac{2a^3}{2a+b+c}\right)=\sum\left(\dfrac{2a^3}{3+a}\right)\)
bạn chọn BĐT phụ là :
\(\dfrac{2a^3}{a+3}\ge\dfrac{11a-7}{8}\)
Đặt \(P=\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{b^4}{\left(b+2\right)\left(c+2\right)}+\frac{c^4}{\left(c+2\right)\left(a+2\right)}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\ge4\sqrt[4]{\frac{a^2}{\left(a+2\right)\left(b+2\right)}.\frac{a+2}{27}.\frac{b+2}{27}.\frac{1}{9}}=\frac{4a}{9}\)(1)
\(\frac{b^4}{\left(b+2\right)\left(c+2\right)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\ge4\sqrt[4]{\frac{b^2}{\left(b+2\right)\left(c+2\right)}.\frac{b+2}{27}.\frac{c+2}{27}.\frac{1}{9}}=\frac{4b}{9}\)(2)
\(\frac{c^4}{\left(c+2\right)\left(a+2\right)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\ge4\sqrt[4]{\frac{c^2}{\left(c+2\right)\left(a+2\right)}.\frac{c+2}{27}.\frac{a+2}{27}.\frac{1}{9}}=\frac{4c}{9}\)(3)
Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\)ta được:
\(P+\frac{2\left(a+b+c\right)+12}{27}+\frac{3}{9}\ge\frac{4\left(a+b+c\right)}{9}\)
\(\Leftrightarrow P+\frac{2}{3}+\frac{3}{9}\ge\frac{4}{3}\)
\(\Leftrightarrow P\ge\frac{1}{3}\left(đpcm\right)\)Dấu"="xảy ra \(\Leftrightarrow a=b=c=1\)
* Bài này sử dụng cách đẳng thức:
\(a^2+b^2+c^2-ab-bc-ca=\frac{1}{2}.\Sigma\left(a-b\right)^2\)
\(27\left(a+b\right)\left(b+c\right)\left(c+a\right)-8\left(a+b+c\right)^3\)
\(=\Sigma\left(-4a-4b-c\right)\left(a-b\right)^2\)
--------------------------------------------------
\(BĐT\Leftrightarrow\frac{8\left(a^2+b^2+c^2-ab-bc-ca\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)-8\left(a+b+c\right)^3}{\left(a+b+c\right)^3}\ge0\) (tự hiểu:v)
\(\Leftrightarrow\frac{4.\frac{1}{2}\Sigma\left(a-b\right)^2}{ab+bc+ca}+\frac{\Sigma\left(-4a-4b-c\right)\left(a-b\right)^2}{\left(a+b+c\right)^3}\ge0\)
\(\Leftrightarrow\Sigma\left(a-b\right)^2\left(\frac{2}{ab+bc+ca}-\frac{4a+4b+c}{\left(a+b+c\right)^3}\right)\ge0\)
Ta chỉ cần chứng minh \(\frac{2}{ab+bc+ca}-\frac{4a+4b+c}{\left(a+b+c\right)^3}>0\) (rồi tương tự các biểu thức còn lại phía sau:v)
\(\Leftrightarrow\frac{2\left(a+b+c\right)^3-\left(4a+4b+c\right)\left(ab+bc+ca\right)}{\left(ab+bc+ca\right)\left(a+b+c\right)^3}>0\)
\(\Leftrightarrow\frac{2a^3+2a^2b+2a^2c+2ab^2+3abc+5ac^2+2b^3+2b^2c+5bc^2+2c^3}{\left(ab+bc+ca\right)\left(a+b+c\right)^3}>0\) (luôn đúng với mọi a, b, c > 0)
Như vậy tương tự các biểu thức còn lại phía sau ta có đpcm.
Đẳng thức xảy ra khi a = b = c
Áp dụng BĐT AM - GM ta có:
$ \frac{a^3}{(1 + b)(1 + c)} + \frac{1 + b}{8} + \frac{1 + c}{8} \geq \frac{3}{4}a$
$\frac{b^3}{(1 + c)(1 + a)} + \frac{1 + c}{8} + \frac{1 + a}{8} \geq \frac{3}{4}b$
$\frac{c^3}{(1 + a)(1 + b)} + \frac{1 + a}{8} + \frac{1 + b}{8} \geq \frac{3}{4}c $
Cộng vế theo vế ta được:
$ P + \frac{2(a + b + c) + 6}{8} \geq \frac{3}{4}(a + b + c) $
$<=> P \geq \frac{1}{2}(a + b + c) - \frac{3}{4}$
$=> P \geq \frac{3}{4} (dpcm)$
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
cảm ơn
nhưng k hiểu mấy