Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S=a^3+b^3+c^3+3a^2+3b^2+3c^2\)
\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(3a^2-3a\right)+\left(3b^2-3b\right)+\left(3c^2-3c\right)+4\left(a+b+c\right)\)
\(=a\left(a+1\right)\left(a-1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)+3a\left(a-1\right)+3b\left(b-1\right)+3c\left(c-1\right)+4\left(a+b+c\right)\)
Ta thấy: \(\hept{\begin{cases}a\left(a-1\right)\left(a+1\right)⋮6\\b\left(b-1\right)\left(b+1\right)⋮6\\c\left(c-1\right)\left(c+1\right)⋮6\end{cases}}\)(1)
\(\hept{\begin{cases}3a\left(a-1\right)⋮6\\3b\left(b-1\right)⋮6\\3c\left(c-1\right)⋮6\end{cases}}\)(2)
\(4\left(a+b+c\right)⋮6\)(3)
Từ (1),(2),(3) ta suy ra \(S⋮6\)
nhân cả hai vế a2+b2+c2=ab+ac+bc cho 2 ta được:
2.(a2+b2+c2)=2.(ab+ac+bc)
<=>2a2+2b2+2c2=2ab+2ac+2bc
<=>2a2+2b2+2c2-2ab-2ac-2bc=0
<=>a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0
<=>(a-b)2+(a-c)2+(b-c)2=0
<=>a-b=0và a-c=0 và b-c=0
<=>a=b và a=c và b=c
=>a=b=c
1. Phải là \((a+b+c)^{\color{red}{2}}=3(ab+bc+ac)\) chứ nhỉ?
VD: Với \(a=b=c=1\) thì \((a+b+c)^3=27\ne 3(ab+bc+ac)=9\) !!!
Mình chép nhầm đề đáng lẽ là mũ 2 nhưng lại chép thành mũ 3 bạn biết giải giải hộ mình với nhé
Ta có
a^2 + b^2 +c^2 = ab + ac + bc
=> a^2 +b^2 +c^2 - ab - bc -ac = 0
=> 2(a^2 + b^2 +c^2 -ab-bc-ac) = 2.0 = 0
=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac = 0
=> a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + c^2 -2ac + c^2 = 0
=> ( a-b)^2 + ( a-c)^2 + ( b-c)^2 = 0
Vì ba cái đều lớn hơn = 0 => = 0 khi cả ba caí = 0
a -b = 0 => a=b
a - c = 0 a = c
b - c = 0 b = c
=> a = b= c => ĐPCM hơi tắt tí
Ta có: a2+b2+c2=ab+bc+ca
=>2(a2+b2+c2)=2(ab+bc+ca)
<=>2a2+2b2+2c2=2ab+2bc+2ca
<=>2a2+2b2+2c2-2ab-2bc-2ca=0
<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0
<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0
<=>(a-b)2+(b-c)2+(a-c)2=0
=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c
=> a=b=c (đpcm)
Ở bài này thì bạn chỉ cần chú ý xíu thôi: đề cho \(a^2-bc=3\left(1\right)\)yêu cầu trong phần chứng minh \(3a\)tức chỉ cần nhân a mỗi bên của (1) thì có \(3a\). Mấy cái kia cũng tương tự
Bài làm
Theo đề ta có :
\(\hept{\begin{cases}a^2-bc=3\\b^2-ac=5\\c^2-ab=7\end{cases}\Rightarrow\hept{\begin{cases}a^3-abc=3a\\b^3-abc=5b\\c^3-abc=7c\end{cases}}}\Rightarrow3a+5b+7c=a^3+b^3+c^3-3abc\)
\(\Rightarrow3a+5b+7c=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Rightarrow3a+5b+7c=\left(a+b+c\right)\left(a^2-bc+b^2-ac+c^2-ab\right)=\left(a+b+c\right)\left(3+5+7\right)\)
\(\Rightarrow3a+5b+7c=15\left(a+b+c\right)\)
Vậy \(3a+5b+7c⋮15\)