Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = a(a+2) - a( a-5) - 7
= a( a+2- (a-5) ) - 7
= a( a+2 - a + 5) - 7
= 7a -7 = 7(a-1) chia hết cho 7
câu b
ta sẽ chứng minh N chia hết cho 2 bởi lẽ số chia hết cho 2 là số chẵn
(a-2)(a+3)-(a-3)(a+2)
= a^2 + 3a - 2a - 6 - ( a^2 + 2a - 3a - 6 ) ( đây là bước nhân phá)
= a^2 +a - 6 - a^2 +a + 6
= 2a chia hết cho 2
vậy N là số chắn
b,
a là số lẻ (2k + 1)
a là số chẵn (2k)
Với a là số lẻ ,ta có :
(a - 2)(a + 3) - (a - 3)(a + 2)
= (2k + 1 - 2)(2k + 1 + 3) - (2k + 1 - 3)(2k + 1 + 2)
= (2k - 1)(2k + 4) - (2k + 4)(2k + 3)
= (2k + 4)[(2k - 1) - (2k + 3)]
Vì 2k + 4 = 2.(k + 2) chia hết cho 2
=> (2k + 4)[(2k - 1) - (2k + 3)] chia hết cho 2
=> (a - 2)(a + 3) - (a - 3)(a + 2) chia hết cho 2
Với a là số chẵn ,ta có :
(a - 2)(a + 3) - (a - 3)(a + 2)
= (2k - 2)(2k + 3) - (2k - 3)(2k + 2)
= 2.(k - 1)(2k + 3) - 2.(k + 1)(2k - 3)
= 2.[ (k - 1)(2k + 3) - (k + 1)(2k - 3)] Chia hết cho 2
Vậy với mọi a thì (a - 2)(a + 3) - (a - 3)(a + 2) chia hết cho 2
nguồn: Câu hỏi của Nguyễn Khánh Dương - Toán lớp 6 - Học toán với OnlineMath
a,M=a(a+2)-a(a-5)
a2+2a+-a2+5a
(a2+-a2)+(5a+2a)
0+7a=7a chia hết cho 7.
Vậy M luôn luôn chia hết cho 7.
b,N=(a-2)(a+3)-(a-3)(a+2)
a(-2+3)-a(-3+2)
a.1-a.-1
a-(-a).
Mà N có dạng a-(-a) đều là số chắn nén N là số chắn.
Vậy N luôn luôn là số chắn.
a) M = a(a + 2) - a(a - 5) - 7
M = a2 + 2a - (a2 - 5a) - 7
M = a2 + 2a - a2 + 5a - 7
M = 7a - 7
M = 7.(a - 1) chia hết cho 7
b) Ta chia a thành 2 trường hợp
a là số lẻ (2k + 1)
a là số chẵn (2k)
Với a là số lẻ ,ta có :
(a - 2)(a + 3) - (a - 3)(a + 2)
= (2k + 1 - 2)(2k + 1 + 3) - (2k + 1 - 3)(2k + 1 + 2)
= (2k - 1)(2k + 4) - (2k + 4)(2k + 3)
= (2k + 4)[(2k - 1) - (2k + 3)]
Vì 2k + 4 = 2.(k + 2) chia hết cho 2
=> (2k + 4)[(2k - 1) - (2k + 3)] chia hết cho 2
=> (a - 2)(a + 3) - (a - 3)(a + 2) chia hết cho 2
Với a là số chẵn ,ta có :
(a - 2)(a + 3) - (a - 3)(a + 2)
= (2k - 2)(2k + 3) - (2k - 3)(2k + 2)
= 2.(k - 1)(2k + 3) - 2.(k + 1)(2k - 3)
= 2.[ (k - 1)(2k + 3) - (k + 1)(2k - 3)]
Chia hết cho 2
Vậy với mọi a thì (a - 2)(a + 3) - (a - 3)(a + 2) chia hết cho 2
a) M = a(a + 2) - a(a - 5) - 7
M = a2 + 2a - (a2 - 5a) - 7
M = a2 + 2a - a2 + 5a - 7
M = 7a - 7
M = 7.(a - 1) chia hết cho 7
b) Ta chia a thành 2 trường hợp a là số lẻ (2k + 1)
a là số chẵn (2k)
Với a là số lẻ ,ta có :
a) \(24a+15b⋮3\)
\(\Rightarrow24\cdot a+15\cdot b⋮3\)
\(\left[24;15\right]⋮3\)
Nên \(24a+15b⋮3\)(đpcm)