K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

Ta có phân số : \(\frac{a^2+a-1}{a^2+a+1}\). Gọi \(ƯCLN\left(a^2+a-1,a^2+a+1\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}a^2+a-1⋮d\\a^2+a+1⋮d\end{cases}}\)  \(\Rightarrow2⋮d\)

Mà ta thấy \(a^2+a-1=a\left(a+1\right)-1\) lẻ \(\Rightarrow d\) lẻ

Vì vậy : \(d=1\)

\(\Rightarrow\frac{a^2+a-1}{a^2+a+1}\) tối giản khi x nguyên.

21 tháng 4 2016

\(\left(a^2+a-1;a^2+a+1\right)=\left(2;a^2+a+1\right)=1\)

Vì a2 + a +1 = a(a+1) + 1 = 2k +1 là số lẻ.

9 tháng 5 2016

\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+2-1\right)}{a\left(a^2+2a+2+1\right)}=\frac{a^2\left(a+1\right)}{a\left(a^2+2a+3\right)}=\frac{a^2+a}{a^2+2a+3}\) (đã rút gọn xong)

nếu a nguyên \(\frac{a^2+a}{a^2+a+a+3}=\frac{1\left(a^2+a\right)}{a+3\left(a^2+a\right)}=\frac{1}{a+3}\)=> tối giản

16 tháng 2 2016

bài tán này khó quá 

16 tháng 2 2016

Mk mới học lớp 5 thôi.

20 tháng 2 2018

Ta có : \(A=\frac{a^2+a-1}{a^2+a+1}=\frac{a^2+a+1-2}{a^2+a+1}=1-\frac{2}{a^2+a+1}\)

\(\Rightarrow\)a nguyên thì A là p/s tối giản 

=> ĐPCM