Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(n+6\right)^2-\left(n-6\right)^2\) = \(\left(n+6\right)\left(n+6\right)-\left(n-6\right)\left(n-6\right)\)
\(=n^2+6n+6n+36-\left(n^2-6n-6n+36\right)\)
\(=n^2+12n+36-\left(n^2-12n+36\right)\)
\(=n^2+12n+36-n^2+12n-36\)
\(=12n+12n\)
\(12n+12n=12\left(n+n\right)=12.2.n=24.n\) và \(12n+12n=n\left(12+12\right)=24n\)chắc chắn sẽ chia hết cho 24 (đpcm)
Nguyễn Thị Thúy Ngân, bạn giải chi tiết quá. Cảm ơn nhìu nhe!
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
a) \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12.2n\)
\(=24n\)
Vì 24n chia hết cho 24 với mọi n
=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)
b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+3\right)\left(n+1\right)\)
Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )
Thay n = 2k + 1 vào ta được
\(\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=2\left(k+2\right)2\left(k+1\right)\)
\(=4\left(k+2\right)\left(k+1\right)\)
Vì (k + 2)(k + 1) là tích của hai số liên tiếp
=> (k + 2)(k + 1) chia hết cho 2
=> 4(k + 2)(k + 1) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )
c) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\left(2n+2\right)\)
\(=4.2\left(n+1\right)\)
\(=8\left(n+1\right)\)
Vì 8(n + 1) chia hết cho 8 với mọi n
=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )
\(a.\left(x^3-16x\right)=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-4=0\\x+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=4\\x=-4\end{cases}}}\)
Uầy lười lm waa
. Hãy nhiệt tình lên :>> Chúng ta là công dân cùng một nước,phải giúp đỡ nhau a~~~
ta có:
n4 + 2n3 - n2 - 2n
= n4 - n3 + 3n3 - 3n2 + 2n2 - 2n
= (n4 - n3) + (3n3 - 3n2) + (2n2 - 2n)
= n3(n - 1) + 3n2(n - 1) + 2n(n - 1)
= (n3 + 3n2 + 2n)(n - 1)
= (n3 + n2 + 2n2 + 2n)(n - 1)
= [n2(n + 1) + 2n(n + 1)](n - 1)
= (n2 + 2n)(n + 1)(n - 1)
= (n - 1)n(n + 1)(n + 2)
Vì bốn số nguyên liên tiếp sẽ chia hết cho 24
=> (n - 1)n(n + 1)(n + 2) chia hết cho 24
Hay n4 + 2n3 - n2 - 2n chia hết cho 24
dài quá man's :v
\(A=n^4+2n^3-n^2-2n=n\left(n^3+2n^2-n-2\right)=n\left[\left(n^3-n\right)+\left(2n^2-2\right)\right]\)
\(=n\left[n\left(n^2-1\right)+2\left(n^2-1\right)\right]=n\left(n^2-1\right)\left(n+2\right)=n\left(n-1\right)\left(n+1\right)\left(n+2\right)\)
vì tích 4 số nguyên liên tiếp chia hết cho 24
<=> A \(⋮24\) --> đpcm
ta có : \(\left(n+6\right)^2-\left(n-6\right)^2=n^2+12n+36-\left(n^2-12n+36\right)\)
\(=n^2+12n+36-n^2+12n-36=24n⋮24\)
\(\Leftrightarrow24n\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\)
\(\Leftrightarrow\left(n+6\right)^2-\left(n-6\right)^2\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\)
vậy \(\left(n+6\right)^2-\left(n-6\right)^2\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\) (đpcm)
\(\left(n+6\right)^2-\left(n-6\right)^2\\ =\left(n+6+n-6\right).\left[n+6-\left(n-6\right)\right]\\ =2n.\left(n+6-n+6\right)\\ =2n.12\\ =24n⋮24\)
Vậy ...