K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 12 2022

Đặt \(N=n^4-2n^3-n^2+2n=n^2\left(n^2-1\right)-2n\left(n^2-1\right)\)

\(=\left(n^2-1\right)\left(n^2-2n\right)=\left(n-1\right)\left(n+1\right)n\left(n-2\right)\)

\(\Rightarrow N\) là tích của 4 số nguyên liên tiếp nên luôn chia hết cho 12

31 tháng 10 2017

ta có:

n4 + 2n3 - n2 - 2n

= n4 - n3 + 3n3 - 3n2 + 2n2 - 2n

= (n4 - n3) + (3n3 - 3n2) + (2n2 - 2n)

= n3(n - 1) + 3n2(n - 1) + 2n(n - 1)

= (n3 + 3n2 + 2n)(n - 1)

= (n3 + n2 + 2n2 + 2n)(n - 1)

= [n2(n + 1) + 2n(n + 1)](n - 1)

= (n2 + 2n)(n + 1)(n - 1)

= (n - 1)n(n + 1)(n + 2)

Vì bốn số nguyên liên tiếp sẽ chia hết cho 24

=> (n - 1)n(n + 1)(n + 2) chia hết cho 24

Hay n4 + 2n3 - n2 - 2n chia hết cho 24

31 tháng 10 2017

dài quá man's :v

\(A=n^4+2n^3-n^2-2n=n\left(n^3+2n^2-n-2\right)=n\left[\left(n^3-n\right)+\left(2n^2-2\right)\right]\)

\(=n\left[n\left(n^2-1\right)+2\left(n^2-1\right)\right]=n\left(n^2-1\right)\left(n+2\right)=n\left(n-1\right)\left(n+1\right)\left(n+2\right)\)

tích 4 số nguyên liên tiếp chia hết cho 24

<=> A \(⋮24\) --> đpcm

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

4 tháng 8 2015

Có: \(n^4+2n^3-n^2-2n=n^2\left(n^2+2n\right)-\left(n^2+2n\right)\)

\(=\left(n^2-1\right)\left(n^2+2n\right)=\left(n^2-1^2\right)n\left(n+2\right)\)

\(=\left(n-1\right)\left(n+1\right)n\left(n+2\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Mà \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là 4 số nguyên liên tiếp

\(\Rightarrow\)trong đó có một số chia hết cho 2, có ít nhất một số chia hết cho 3, có ít nhất một số chia hết cho 4

\(\Rightarrow\)\(\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)chia hết cho \(2\times3\times4\)

\(\Rightarrow\)\(\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)chia hết cho 24

vậy, \(n^4+2n^3-n^2-2n\)chia hết cho 24

30 tháng 10 2016

\(n^4+2n^3-n^2-2n\)

\(=n^2\left(n^2-1\right)+2n\left(n^2-1\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Tích của 4 số nguyên liên tiếp chia hết cho 24

=> n4 + 2n3 - n2 - 2n chia hết cho 24.

30 tháng 10 2016

\(n^4+2n^3-n^2-2n=n^3\left(n+2\right)-n\left(n+2\right)=n\left(n+2\right)\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Trong \(4\) số tự nhiên liên tiếp có \(2\) số chẵn liên tiếp
Trong hai số chẵn liên tiếp có :
+) Một số chẵn chia hết cho \(2\)
+) Một số chẵn chia hết cho \(4\)

Nên tích \(2\) số chẵn liên tiếp chia hết cho \(8\)
Hay tích \(4\) số tự nhiên liên tiếp chia hết cho \(8\)
Ta cũng có : Tích \(3\) số tự nhiên chia hết cho \(3\)
Hay tích \(4\) số tự nhiên liên tiếp chia hết cho \(3\)
Vậy tích \(4\) số tự nhiên liên tiếp chia hết cho \(3\)

Vậy tích \(4\) số tự nhiên liên tiếp chia hết cho \(24\left(=8.3\right)\)

Hay \(n^4+2n^3-n^2-2n⋮24\forall n\in Z\)

 

 
14 tháng 9 2017

Phân tích đa thức thành nhân tử :

\(x^4+2n^3-n^2-2n\)

\(=n^3\left(x+2\right)-n\left(n+2\right)\)

\(=\left(n^3-n\right)\left(n+2\right)\)

\(=n\left(n^2-1\right)\left(n+2\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮24\)

vì-là-tích-của-4-số-liên-tiếp

CHÚC-BẠN-HỌC-TỐT.....

18 tháng 12 2017

bn làm sai rùi

10 tháng 7 2018

mk làm luôn nhá ^^

tá có:A=(2n+1).(n2-3n-1)-2n3+1=\(2n^3-6n^2-2n+n^2-3n-1-2n^3+1.\)

                                                  =\(-5n^2-5n\)

 Ta thấy:\(-5n⋮5\Rightarrow-5n^2⋮5\)

        \(\Rightarrow-5n^2-5n⋮5\)với mọi số nguyên n

\(\Rightarrowđpcm\)