K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
28 tháng 8 2016
Bài 1: Có P(ABCD) = AB + BC + CD + DA = 66
P(ABC) = AB + BC + CA = 56
P(ACD) = AC + CD + DA = 60
=> P (ABC) + P(ACD) = (AB + BC + CD + DA) + 2.AC = 66 + 2.AC = 56 + 60 = 116
=> 2.AC = 116 - 66 = 50 => AC = 50 : 2 = 25
NV
Nguyễn Việt Lâm
Giáo viên
30 tháng 4 2021
Gọi độ dài cạnh góc vuông thứ 2 là x>0 (cm)
\(\Rightarrow\) Độ dài cạnh huyền là \(x+2\) (cm)
Theo định lý Pitago ta có:
\(4^2+x^2=\left(x+2\right)^2\)
\(\Leftrightarrow16+x^2=x^2+4x+4\)
\(\Leftrightarrow4x=12\Rightarrow x=3\)
Vậy độ dài cạnh huyền là \(3+2=5\left(cm\right)\)
Giả sử tam giác ABC không đều không có góc nào nhỏ hơn 60 độ.
\(\widehat{BAC}=60^o+a;\widehat{ABC}=60^o+b;\widehat{ACB}=60^o+c\left(a,b,c\ne0\right)\)
Mà: \(\widehat{ABC}+\widehat{BAC}+\widehat{ABC}=180^o\)
\(\Leftrightarrow60^o+a+60^o+b+60^o+c=180^o\)
Mà: \(\Rightarrow a+b+c=0\left(a,b,c\ne\right)\) (mâu thuẫn)
Vậy: Tam giác ABC không đều có ít nhất một góc trong nhỏ hơn 60 độ
Không mất tính tổng quát , ta giả sử : \(\widehat{A}\ge\widehat{B}\ge\widehat{C}\)
Vì tam giác ABC không phải là tam giác đều , ta còn có \(\widehat{A}>\widehat{C}\). Giả sử \(\widehat{C}\ge60^o\) thì
\(\widehat{A}+\widehat{B}+\widehat{C}>180^o\) (vô lí)
Vậy \(\widehat{C}< 60^o\) => đpcm