\(\frac{n^5}{5}+\frac{n^4}{2}+\frac{n^3}{3}-\frac{n}{30}\)THUỘC 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta CM : A= \(6n^5+15n^4+10n^3-n\)  chia hết cho 30

+A = \(\left(6n^5+15n^4+9n^3\right)+\left(n^3-n\right)\)\(\left(6n^5+15n^4+9n^3\right)+\left(n-1\right)n\left(n+1\right)\) => A chia hết cho 3 với mọi n thuộc N

+A= \(\left(6n^5+14n^4+10n^3\right)+\left(n^4-n\right)\) = \(\left(6n^5+14n^4+10n^3\right)+n\left(n-1\right)\left(n^2+n+1\right)\)=> A chia hết cho 2 .

+ A = \(\left(5n^5+15n^4+10n^3\right)+\left(n^5-n\right)\)\(\left(5n^5+15n^4+10n^3\right)+n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\) chiaa hết cho  5 ( bạn chứng minh ccais cuối chia hết cho 5 = 5 TH)

=> A chia hết cho 2 .3.5 = 30

=> dpcm

10 tháng 8 2016

Mình camon nha =))

12 tháng 9 2018

a, Ta có: \(\frac{n^5}{5}+\frac{n^3}{3}+\frac{7n}{15}=\frac{n^5-n}{5}+\frac{n}{5}+\frac{n^3-n}{3}+\frac{n}{3}+\frac{7n}{15}\) 

\(=\frac{n^5-n}{5}+\frac{n^3-n}{3}+n\) 

Chứng minh \(n^5-n⋮5\Rightarrow\frac{n^5-n}{5}\in Z\) 

                   \(n^3-n⋮3\Rightarrow\frac{n^3-n}{3}\in Z\)

\(\Rightarrow\frac{n^5-n}{5}+\frac{n^3-n}{3}+n\in Z\) 

=> Đpcm 

b, Tương tự dùng tính chất chia hết

19 tháng 7 2016
  • Ta xét : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(n+1\right)-n}=2\left(\sqrt{n+1}-\sqrt{n}\right)< 2\sqrt{n+1}-2\)
  • Ta xét : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-\left(n-1\right)}=2\left(\sqrt{n}-\sqrt{n-1}\right)< 2\sqrt{n}\) ; 
26 tháng 12 2017

ta có ...=\(\frac{3n^5+5n^3+7n}{15}\)

ta có \(5n^3+7n=n\left(5n^2+7\right)\)

xét n chia hết cho 3 thì \(5n^3+7n⋮3\Rightarrow5n^3+7n+3n^5⋮3\)

xét n không chia hết cho 3 =>\(n^2\equiv1\left(mod3\right)\Rightarrow5n^2\equiv2\left(mod3\right)\Rightarrow5n^2+7⋮3\)

=>\(5n^3+7n+3n^5⋮3\forall n\in Z\)

ta có \(3n^5+7n=n\left(3n^4+7\right)\)

xét n chia hết cho 5 =>\(3n^5+7n+5n^3⋮5\)

xét n không chia hết cho 5 =>\(n^4\equiv1\left(mod5\right)\Rightarrow3n^4\equiv3\left(mod5\right)\Rightarrow3n^4+7⋮5\)

=>\(5n^3+3n^5+7n⋮5\forall n\in Z\)

=>tử chia hết cho 15 => ... là số nguyên (ĐPCM)

10 tháng 8 2019

Đặt \(\frac{5-\sqrt{21}}{2}=a;\frac{5+\sqrt{21}}{2}=b>0\) thì \(ab=1\)

*Chứng minh an là số tự nhiên.

Với n = 0, 1 nó đúng. Giả sử nó đúng đến n = k tức là ta có:

\(\hept{\begin{cases}a^{k-1}+b^{k-1}\inℤ\\a^k+b^k\inℤ\end{cases}}\). Ta cần chưng minh nó đúng với n =  k + 1 hay:

\(a^k.a+b^k.b=\left(a^k+b^k\right)\left(a+b\right)-ab\left(b^{k-1}+a^{k-1}\right)\)

\(=\left(a^k+b^k\right)\left(a+b\right)-\left(b^{k-1}+a^{k-1}\right)\inℤ\) (em tắt tí nhá, dựa vào giả thiết quy nạp thôi)

Vậy ta có đpcm. 

Còn lại em chưa nghĩ ra

10 tháng 8 2019

Cái bài ban nãy sửa a, b thành x và y nha! Không thôi nó trùng với đề bài. Tại quen tay nên em đánh luôn a, b

15 tháng 11 2016

Đặt biểu thức trung gian là :

\(B=\frac{1}{2^2-1}+\frac{1}{3^2-1}+\frac{1}{4^2-1}+...+\frac{1}{n^2-1}\) thì \(A< B\)

Còn \(B=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{\left(n-1\right)\left(n+1\right)}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n-1}-\frac{1}{n+1}\right)\)

\(=\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}-\frac{1}{n+1}\right)\)

\(=\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{n}-\frac{1}{n+1}\right)< \frac{1}{2}.\frac{3}{2}=\frac{3}{4}\)

Vậy \(A< 3< \frac{3}{4}< 1.\)

 

29 tháng 7 2019

Cách 2. Gọi biểu thức trên là A.Ta làm trội:

\(\frac{1}{x^2}\left(x\ge2\right)=\frac{1}{x.x}< \frac{1}{\left(x-1\right).x}\). Khi đó, áp dụng vào,ta có:

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}< 1\forall n\ge2^{\left(đpcm\right)}\)

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)CMR: \(P⋮2003\)2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không...
Đọc tiếp

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)

CMR: \(P⋮2003\)

2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)

3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)

4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)

5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)

6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không phải là một số nguyên tố 

7.Tìm tất cả các số nguyên tố P sao cho tổng của tất cả các ước số tự nhiên của các phương trình là 1 số chính phương

8. Biết P và \(8p^2-1\)cũng là số nguyên tố

9. Tìm tất cả các số nguyên tố có 4 chữ số \(\overline{abcd}\)sao cho \(\overline{ab}\)\(\overline{ac}\)là các số nguyên tố và \(b^2=\overline{cd}+b-c\)

10.Cho \(\overline{abc}\)là 1 số nguyên tố. CM phương trình: \(ax^2+bx+c=0\)không có nghiệm hữu tỉ

 

0