\(\frac{a^5}{120}-\frac{a^3}{24}+\frac{a}{30}\) là số nguyên với a nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2018

quy dong ta duoc a(a^4 - 5a^2 +4) = a(a^2 - 1)(a^2 - 4) = (a-2)(a-1)a(a+1)(a+2) chia het cho 120 voi a nguyen

14 tháng 11 2018

\(\frac{a^5}{120}-\frac{a^3}{24}+\frac{a}{30}\)

\(=\frac{a}{6}.\left(\frac{a^4}{20}-\frac{a^2}{4}+\frac{a}{5}\right)=\frac{a}{6}.\left(\frac{a^4}{20}-\frac{5a^2}{20}+\frac{4a}{20}\right)\)

\(=\frac{a}{6}.\left(\frac{a^4-5a^2+4a}{20}\right)=\frac{a^5-5a^3+4a^2}{120}=\frac{a^2.\left(a^3-5a+4\right)}{120}=\frac{a.\left(a^2-1\right).\left(a^2-4\right)}{120}\)

\(=\frac{\left(a-2\right).\left(a-1\right).a.\left(a+1\right).\left(a+1\right)}{120}\)

vì a thuộc Z => \(=\frac{\left(a-2\right).\left(a-1\right).a.\left(a+1\right).\left(a+1\right)}{120}\)thuộc Z

=> đpcm

6 tháng 7 2019

Từ giả thiết: \(\frac{a}{b}=\frac{b}{c}\Rightarrow ac=b^2\Rightarrow abc=b^3\)

Ta có: \(\frac{a^3-2b^3+c^3}{a+b+c}=\frac{a^3+b^3+c^3-3c^3}{a+b+c}=\frac{a^3+b^3+c^3-3abc}{a+b+c}\)

Xét: \(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(\Rightarrow\frac{a^3-2b^3+c^3}{a+b+c}=a^2+b^2+c^2-ab-bc-ac\) là 1 số nguyên (đpcm)

29 tháng 8 2021

Sai r bạn ơi

Y
23 tháng 6 2019

+ Ta có : \(n^5-n=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)

+ \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là tích 5 số nguyên liên tiếp

\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)

\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)⋮5\)

\(\Rightarrow n^5-n⋮5\)

+ \(n^3-n=\left(n-1\right)n\left(n+1\right)⋮3\)

\(B=\frac{n^5-n}{5}+\frac{n^3-n}{3}+\frac{7n}{15}+\frac{n}{5}+\frac{n}{3}\)

\(=\frac{n^5-n}{5}+\frac{n^3-n}{3}+\frac{15n}{15}\)

=> B là số nguyên

Y
23 tháng 6 2019

\(A=\frac{n^5+10n^4+35n^3+50n^2+24n}{120}\) \(=\frac{n\left[n^3\left(n+1\right)+9n^2\left(n+1\right)+26n\left(n+1\right)+24\left(n+1\right)\right]}{120}\)

\(=\frac{n\left(n+1\right)\left[n^3+9n^2+26n+24\right]}{120}\) \(=\frac{n\left(n+1\right)\left[n^2\left(n+2\right)+7n\left(n+2\right)+12\left(n+2\right)\right]}{120}\)

\(=\frac{n\left(n+1\right)\left(n+2\right)\left(n^2+7n+12\right)}{120}\) \(=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}{120}\)

+ \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\)là tích 5 số nguyên liên tiếp\

\(\Rightarrow\left\{{}\begin{matrix}n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮3\\n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮5\end{matrix}\right.\) (1)

+ trong 5 số nguyên liên tiếp tồn tại ít nhất 2 số chẵn liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮8\) ( do tích 2 số chẵn liên tiếp chia hết cho 8 ) (2)

+ Từ (1) và (2) => \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)

=> đpcm

+ \(C=\frac{n^3+3n^2+2n}{24}=\frac{n\left(n+1\right)\left(n+2\right)}{24}\)

+ \(n\left(n+1\right)\left(n+2\right)\) là tích 3 số nguyên liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\) (3)

+ n và n + 2 là 2 số chẵn liên tiếp

\(\Rightarrow n\left(n+2\right)⋮8\Rightarrow n\left(n+1\right)\left(n+2\right)⋮8\) (4)

+ Từ (3) và (4) \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮24\)

=> C là số nguyên

20 tháng 10 2019

a, (n+3)2-(n-1)2

= n2+6n+9-n2+2n-1

= 8n + 8

= 8(n+1) chia hết cho 8

30 tháng 1 2022

Ta có \(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}=\frac{2a}{6}+\frac{3a^2}{6}+\frac{a^3}{6}=\frac{2a+3a^2+a^3}{6}\)

Lại có  2a + 3a2 + a3

  =a(2+3a+a2

= a(a2 + 3a +2)

=a(a2 +a +2a +2)

= a[a(a+1) + 2(a+1)]

=a [(a+1) (a+2)]

= a(a+1)(a+2)

ta thấy a(a+1)(a+2) là tích 3 số nguyên liên tiếp 

=> a(a+1)(a+2) \(⋮3\) và \(⋮\)2

mà (2;3)=1

=>  a(a+1)(a+2) \(⋮\)

=> \(\frac{a\left(a+1\right)\left(a+2\right)}{6}\) là số nguyên hay \(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\) là số nguyên

\(\text{Ta có:}\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\)

\(\Leftrightarrow\frac{2a+3a^2+a^3}{6}\)

\(\text{Xét tử số:}\)

\(a^3+3a^2+2a=a\left(a^2+3a+2\right)\)

\(=a\left[a\left(a+2\right)+\left(a+2\right)\right]\)

\(=a\left(a+1\right)+\left(a+2\right)\)

\(\text{Vì a,a+1 là 2 số nguyên liên tiếp nên:}\)

\(a\left(a+1\right)⋮2\Rightarrow a\left(a+1\right)\left(a+2\right)⋮2\)

\(\Leftrightarrow a^3+3a^2+2a⋮2\left(1\right)\)

\(\text{Mặt khác }a,a+1,a+2\text{ là 3 số nguyên liên tiếp nên chúng}⋮3\)

\(\Leftrightarrow a\left(a+1\right)\left(a+2\right)⋮3\)

\(\Leftrightarrow a^3+3a^2+2a⋮3\left(2\right)\)

\(\text{Từ (1) và (2) kết hợp (2;3) nguyên tố cùng nhau:}\)

\(\Rightarrow a^3+3a^2+2a⋮6\)

\(\Rightarrow\frac{a^3+3a^2+2a}{6}\inℤ\)

\(\Rightarrow\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\text{ là 1 số nguyên}\)

20 tháng 4 2017

a.(x+1)(x+2)(x+3)(x+4)-24=[(x+1)(x+4)][(x+2)(x+3)]-24=(\(x^2+5x+4\))(\(x^2+5x+6\))-24  (1)

đặt \(x^2+5x+5=a\)ta có (1)=(a-1)(a+1)-24=\(a^2-25=\left(a-5\right)\left(a+5\right)\)

thay a=\(x^2+5x+5\)vào (1) ta có (1)=(\(x^2+5x\)+5-5)(\(x^2+5x\)+5+5)=x(x+5)(\(x^2\)+5x+10)

b.ta có :\(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}=\frac{2a+3a^2+a^3}{6}=\frac{a\left(a^2+3a+2\right)}{6}\)=\(\frac{a\left(a^2+2a+a+2\right)}{6}=\frac{a\left(a+1\right)\left(a+2\right)}{6}\).ta lại có a(a+1)(a+2) là tích 3 số nguyên liên tiếp luôn chia hết cho 6 suy ta điều cần cm

1 tháng 12 2016

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\)

\(\Leftrightarrow a+b+c=0\)

Xét : \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right).\left(b+c\right).\left(c+a\right)=-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) luôn chia hết cho 3

25 tháng 7 2020

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)

\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)

\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)

\(\Leftrightarrow bca-dca+bd^2-db^2=0\)

\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)

\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)

30 tháng 3 2022

sao cái dấu tương đương thứ 4 bạn bỏ c-a v ạ