Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{100\cdot101\cdot102}\\ M=\frac{1}{2}\cdot\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{100\cdot101\cdot102}\right)\\ M=\frac{1}{2}\cdot\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{100\cdot101}-\frac{1}{101\cdot102}\right)\\ M=\frac{1}{2}\cdot\left(\frac{1}{1\cdot2}-\frac{1}{101\cdot102}\right)\\ M=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{10302}\right)\\ M=\frac{1}{2}\cdot\left(\frac{5151}{10302}-\frac{1}{10302}\right)\\ M=\frac{1}{2}\cdot\frac{25}{51}\\ M=\frac{25}{102}\\ \Rightarrow M< 1\)
Vậy M < 1
\(M=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{100.101.102}\right)\)
\(M=\frac{1}{2}.\left(1-\frac{1}{102}\right)\)
\(M=\frac{101}{204}< 1\left(đpcm\right)\)
Ta có: M=11.2.3 +12.3.4 +13.4.5 +...+1100.101.102
M=2.(11.2.3 +12.3.4 +13.4.5 +...+1100.101.102 ).12
M=(21.2.3 +22.3.4 +23.4.5 +...+2100.101.102 ).12
M=(11.2 -12.3 +12.3 -13.4 +13.4 -14.5 +...+1100.101 −1101.102 ).12
M=( 11.2 −1101.102 ).12
Mà 11.2 −1101.102 <1
Và 12 <1
=> (11.2 −1101.102 ) .12 <1
=> M <1
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{2.3}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{19.20}\right)=\frac{1}{4}-\frac{1}{2.19.20}<\frac{1}{4}\)
B=\(\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}< 3\)
A= \(\frac{1}{1.2.3}\)+ \(\frac{1}{2.3.4}\)+ ... + \(\frac{1}{19.20.21}\)< \(\frac{1}{4}\)
= 1 - \(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{2}\)- \(\frac{1}{3}\)- \(\frac{1}{4}\)+ ... + \(\frac{1}{19}-\frac{1}{20}-\frac{1}{21}\)
= 1 - ( \(\frac{1}{2}-\frac{1}{3}\)+ \(\frac{1}{2}-\frac{1}{3}\)) + ... + ( \(\frac{1}{19}-\frac{1}{20}+\frac{1}{19}-\frac{1}{20}\)) - \(\frac{1}{21}\)
= 1 - \(\frac{1}{21}\)
= \(\frac{20}{21}\)< \(\frac{1}{4}\)
=> Đề bài có sai ko bạn?
\(\frac{3x}{5}=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{6.7.8}\)
Ta có: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{6.7.8}\)
\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{6.7.8}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{6.7}-\frac{1}{7.8}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{7.8}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{56}\right)\)
\(=\frac{1}{2}.\frac{27}{56}=\frac{27}{112}\)
\(\frac{3x}{5}=\frac{27}{112}\)
\(\Rightarrow3x=\frac{27.5}{112}\)
\(\Rightarrow3x=\frac{135}{112}\)
\(\Rightarrow x=\frac{45}{112}\)
~Học tốt~
$\frac{4}{n\left(n+2\right)\left(n+4\right)}=\frac{n+4-n}{n\left(n+2\right)\left(n+4\right)}=\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+2\right)\left(n+4\right)}$4n(n+2)(n+4) =n+4−nn(n+2)(n+4) =1n(n+2) −1(n+2)(n+4) $\frac{B}{9}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}=\frac{1}{3}-\frac{1}{27.29}<\frac{1}{3}$B9 =11.3 −13.5 +13.5 −15.7 +...+125.27 −127.29 =13 −127.29 <13 $\Rightarrow B<3$
bạn phải cho ra 2 số cuối thì mới làm đc nha có 1 s
ố cuối ko làm đc đâu
A= 1-1/2 + 1-1/3 + 1/2-1/5 + 1/3-1/8+ 1/5-1/13+1/8- 1/21 +....+ 1/610- 1/1597
A= 1/610