Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\left(1\right)\)
\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\left(2\right)\)
Từ (1) và (2) ta được \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(đpcm\right)\)
1/ Tính:
\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}+\frac{19}{90}\)
\(=\frac{3}{1.2}-\frac{5}{2.3}+\frac{7}{3.4}-\frac{9}{4.5}+\frac{11}{5.6}-\frac{13}{6.7}+\frac{15}{7.8}-\frac{17}{8.9}+\frac{19}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
a) \(-\frac{1}{4}.13\frac{9}{11}-0,25.6\frac{2}{11}\)
\(=-\frac{1}{4}.13\frac{9}{11}-\frac{1}{4}.6\frac{2}{11}\)
\(=-\frac{1}{4}\left(13\frac{9}{11}+6\frac{2}{11}\right)\)
\(=-\frac{1}{4}.20\)
\(=-5\)
b) \(B=\frac{-5}{6}.\frac{4}{19}+\frac{-7}{12}.\frac{4}{19}-\frac{40}{57}\)
\(=\frac{4}{19}\left(\frac{-5}{6}+\frac{-7}{12}\right)-\frac{40}{57}\)
\(=\frac{4}{19}.\frac{-17}{12}-\frac{40}{57}\)
\(=\frac{-17}{57}-\frac{40}{57}\)
\(=-1\)
c) \(\frac{3}{7}.\frac{9}{26}-\frac{1}{14}.\frac{1}{13}-\frac{1}{7}\)
\(=\frac{3}{7}.\frac{9}{26}-\frac{1}{2}.\frac{1}{7}.\frac{1}{13}-\frac{1}{7}\)
\(=\frac{1}{7}\left(3.\frac{9}{26}-\frac{1}{2}.\frac{1}{13}-1\right)\)
\(=\frac{1}{7}.0\)
\(=0\)
d) \(\frac{4}{9}:\left(-\frac{1}{7}\right)+6\frac{5}{9}:\left(-\frac{1}{7}\right)\)
\(=\left(\frac{4}{9}+6\frac{5}{9}\right):\left(-\frac{1}{7}\right)\)
\(=7:\left(-\frac{1}{7}\right)\)
\(=-49\)
Đặt \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...\frac{1}{100^2}\)
Ta có :
\(A< \frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+...+\frac{1}{99\times100}\)
\(\Rightarrow A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
Ta có :
\(A>\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+...+\frac{1}{100\times101}\)
\(\Leftrightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{100}>\frac{1}{6}\)
Vậy \(\frac{1}{6}< A< \frac{1}{4}\left(đpcm\right)\)
Câu này có rồi