K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 1 2021

\(\Leftrightarrow a^4+b^4+2a^2b^2-2a^3b-2ab^3\ge0\)

\(\Leftrightarrow\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(a-b\right)^2\ge0\) (luôn đúng)

16 tháng 2 2019

bn vô câu hỏi tương tự có hết nhé

30 tháng 1 2019

Áp dụng BĐT Bunhiacopxki, ta có:

\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\)\(\ge4a^2b^2\)(BĐT Cô-si)

Có: \(ab^3+a^3b=ab\left(a^2+b^2\right)\)

Áp dụng BĐT Cô-si, ta có:

\(ab\left(a^2+b^2\right)\ge2a^2b^2\)

\(\Rightarrow ab^3+a^3b+2a^2b^2\ge4a^2b^2\)

Vậy VT=VP.

Ta có đpcm.

7 tháng 12 2017

Giả sử \(2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\)

\(\Leftrightarrow2a^4+2b^4-a^3b-ab^3-2a^2b^2\ge0\)

\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)+\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)+\left(a^2-b^2\right)^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)+\left(a^2-b^2\right)^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2-ab+b^2\right)+\left(a^2-b^2\right)^2\ge0\) \(\forall a;b\)                   \(\left(1\right)\)

Lại có: \(a^2-ab+b^2=\left(a^2-2.a.\frac{b}{2}+\frac{b^2}{4}\right)+\frac{3b^2}{4}\)

                                         \(=\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\) \(\forall a;b\)                          \(\left(2\right)\)

Từ (1) và (2) suy ra  \(\left(a-b\right)^2\left(a^2-ab+b^2\right)+\left(a^2-b^2\right)^2\ge0\forall a;b\)

\(\Leftrightarrow2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\forall a;b\)

Vậy \(2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\) với mọi a;b

24 tháng 4 2018

\(\dfrac{4}{a+b}-\dfrac{2a^2+3b^2}{2a^3+3b^3}-\dfrac{2b^2+3a^2}{2b^3+3a^3}=\dfrac{\left(a-b\right)^2.\left(12b^4+12ab^3-a^2b^2+12a^3b+12a^4\right)}{\left(a+b\right)\left(2a^3+3b^3\right)\left(2b^3+3a^3\right)}\ge0\)

PS: Còn cách dùng holder nữa mà lười quá

24 tháng 4 2018

holder Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath

AH
Akai Haruma
Giáo viên
9 tháng 2 2018

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{a^3}{2b+3c}+\frac{b^3}{2c+3a}+\frac{c^3}{2a+3b}=\frac{a^4}{2ab+3ac}+\frac{b^4}{2bc+3ba}+\frac{c^4}{2ac+3bc}\)

\(\geq \frac{(a^2+b^2+c^2)^2}{2ab+3ac+2bc+3ba+2ac+3bc}=\frac{(a^2+b^2+c^2)^2}{5(ab+bc+ac)}\)

Theo hệ quả của BĐT AM-GM ta có:

\(a^2+b^2+c^2\geq ab+bc+ac\)

\(\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)(ab+bc+ac)}{5(ab+bc+ac)}=\frac{a^2+b^2+c^2}{5}\)

Ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c\)

8 tháng 8 2019

\(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)

\(\Leftrightarrow a^4+b^4+2a^2b^2-2ab^3-2a^3b\ge0\)

\(\Leftrightarrow\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)\ge\left(a^2+b^2\right).2\sqrt{a^2.b^2}-2ab\left(a^2+b^2\right)=0\)( luôn đúng )

vì BĐT cuối luôn đúng nên BĐT đã cho đúng \(\Leftrightarrow a=b\)

17 tháng 1 2022

weo

NV
17 tháng 1 2022

a.

\(\sum\dfrac{ab}{a+c+b+c}\le\dfrac{1}{4}\sum\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)=\dfrac{a+b+c}{4}\)

2.

\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{a+b+2c+2b}\le\dfrac{ab}{9}\left(\dfrac{4}{a+b+2c}+\dfrac{1}{2b}\right)=4.\dfrac{ab}{a+b+2c}+\dfrac{a}{18}\)

Quay lại câu a