Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x,y,z\ne0\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xyz\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=0\Leftrightarrow xy+xz+yz=0\)
\(\Rightarrow\left\{{}\begin{matrix}xy=-xz-yz\\xz--xy-yz\\yz=-xy-xz\end{matrix}\right.\)
Ta có:
\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-xz=x\left(x-y\right)-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-z\right)\Rightarrow\dfrac{1}{x^2+2yz}=\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)
Tương tự: \(\dfrac{1}{y^2+2xz}=\dfrac{1}{\left(y-x\right)\left(y-z\right)}=\dfrac{-1}{\left(x-y\right)\left(y-z\right)}\)
\(\dfrac{1}{z^2+2xy}=\dfrac{1}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{\left(x-z\right)\left(y-z\right)}\)
Cộng vế với vế ta được:
\(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xz}+\dfrac{1}{z^2+2xy}=\dfrac{1}{\left(x-y\right)\left(x-z\right)}+\dfrac{-1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(x-z\right)\left(y-z\right)}\)
\(=\dfrac{y-z-\left(x-z\right)+x-y}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{y-z-x+z+x-y}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=0\) (đpcm)
Lời giải:
Từ $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$
$\Rightarrow xy+yz+xz=0$
Khi đó:
$x^2+2yz=x^2+yz-xz-xy=(x^2-xy)-(xz-yz)=x(x-y)-z(x-y)=(x-z)(x-y)$
Tương tự với $y^2+2zx, z^2+2xy$ thì:
$P=\frac{yz}{(x-z)(x-y)}+\frac{xz}{(y-z)(y-x)}+\frac{xy}{(z-x)(z-y)}$
$=\frac{-yz(y-z)-xz(z-x)-xy(x-y)}{(x-y)(y-z)(z-x)}=\frac{-[yz(y-z)+xz(z-x)+xy(x-y)]}{-[xy(x-y)+yz(y-z)+xz(z-x)]}=1$
Áp dụng Bất đẳng thức: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (Tự chứng minh)
\(\Rightarrow C=\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2xz}=\frac{9}{\left(x+y+z\right)^2}\ge\frac{9}{3^2}=1\)Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
\(C=\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}\ge\frac{9}{3^2}=1\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Ta có :
\(x+y+z=1\)
\(\Rightarrow\left(x+y+z\right)^2=1\)
Áp dụng BĐT Cauchy-schwar dưới dạng engel ta có :
\(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2zx}+\dfrac{1}{z^2+2xy}\ge\dfrac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=\dfrac{9}{1}=9\)
\(\text{Ta có : }x+y+z=1\\ \Rightarrow\left(x+y+z\right)^2=1\\ \Rightarrow x^2+y^2+z^2+2xy+2xz+2yz=1\\ \Rightarrow\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xz}+\dfrac{1}{z^2+2xy}\\ =\dfrac{x^2+y^2+z^2+2xy+2xz+2yz}{x^2+2yz}+\dfrac{x^2+y^2+z^2+2xy+2xz+2yz}{y^2+2xz}+\dfrac{x^2+y^2+z^2+2xy+2xz+2yz}{z^2+2xy}\\ =\dfrac{x^2+2yz}{x^2+2yz}+\dfrac{y^2+2xz}{x^2+2yz}+\dfrac{z^2+2xy}{x^2+2yz}+\dfrac{x^2+2yz}{y^2+2xz}+\dfrac{y^2+2xz}{y^2+2xz}+\dfrac{z^2+2xy}{y^2+2xz}+\dfrac{x^2+2yz}{z^2+2xy}+\dfrac{y^2+2xz}{z^2+2xy}+\dfrac{z^2+2xy}{z^2+2xy}\\ =1+\left(\dfrac{y^2+2xz}{x^2+2yz}+\dfrac{x^2+2yz}{y^2+2xz}\right)+\left(\dfrac{z^2+2xy}{x^2+2yz}+\dfrac{x^2+2yz}{z^2+2xy}\right)+1+\left(\dfrac{y^2+2xz}{z^2+2xy}+\dfrac{z^2+2xy}{y^2+2xz}\right)+1\)Áp dụng \(BDT:\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
\(\Rightarrow1+\left(\dfrac{y^2+2xz}{x^2+2yz}+\dfrac{x^2+2yz}{y^2+2xz}\right)+\left(\dfrac{z^2+2xy}{x^2+2yz}+\dfrac{x^2+2yz}{z^2+2xy}\right)+1+\left(\dfrac{y^2+2xz}{z^2+2xy}+\dfrac{z^2+2xy}{y^2+2xz}\right)+1\\ \ge1+2+2+1+2+1\ge9\left(đpcm\right)\)
Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}y^2+2xz=x^2+2yz\\z^2+2xy=x^2+2yz\\y^2+2xz=z^2+2xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y^2-2yz=x^2-2xz\\z^2-2yz=x^2-2xy\\y^2-2xy=z^2-2xz\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y^2-2yx+z^2=x^2-2xz+z^2\\z^2-2yz+y^2=x^2-2xy+y^2\\y^2-2xy+x^2=z^2-2xz+x^2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(y-z\right)^2=\left(x-z\right)^2\\\left(z-y\right)^2=\left(x-y\right)^2\\\left(y-x\right)^2=\left(z-x\right)^2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y-z=x-z\\z-y=x-y\\y-x=z-x\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\z=x\\y=z\end{matrix}\right.\Leftrightarrow x=y=z\\\text{Mà } x+y+z=1\\ \Leftrightarrow3x=1\\ \Leftrightarrow x=\dfrac{1}{3}\\ \Leftrightarrow x=y=z=\dfrac{1}{3}\)
Vậy \(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xz}+\dfrac{1}{z^2+2xy}\ge9\) với \(x;y;z>0\) và \(x+y+z=1\)
đẳng thức xảy ra khi : \(x=y=z=\dfrac{1}{3}\)
ÁP dụng bất đẳng thức AM-GM ta có:
\(P=\dfrac{x^2}{x^2+2yz}+\dfrac{y^2}{y^2+2xz}+\dfrac{z^2}{z^2+2xy}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}\)\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dấu "=" xảy ra\(\Leftrightarrow x=y=z>0\)
Vậy \(MinP=1\Leftrightarrow x=y=z>0\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
\(\Leftrightarrow yz+zx+xy=0\)
\(\Leftrightarrow\left[{}\begin{matrix}yz=-zx-xy\\zx=-xy-yz\\xy=-yz-zx\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{1}{x^2+2yz}=\dfrac{1}{x^2-xz-xy+yz}=\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)
CMTT\(\Rightarrow\dfrac{1}{y^2+2zx}=\dfrac{1}{\left(y-z\right)\left(y-x\right)}\)
\(\dfrac{1}{z^2+2xy}=\dfrac{1}{\left(z-x\right)\left(z-y\right)}\)
\(\Rightarrow A=\dfrac{1}{\left(x-y\right)\left(x-z\right)}+\dfrac{1}{\left(y-z\right)\left(y-x\right)}+\dfrac{1}{\left(z-x\right)\left(z-y\right)}\)
\(A=\dfrac{y-z}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\dfrac{z-x}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\dfrac{x-y}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)
\(A=\dfrac{y-z+z-x+x-y}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=0\left(đpcm\right)\)
Biến thì khác nhau nhưng quan trọng là cách làm :))
Vào TKHĐ của tớ để xem hình ảnh nhé, dài ngại chả muốn viết :V
Áp dụng BĐT Cauchy-Schwarz, ta có:
\(VT\ge\dfrac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=\dfrac{9}{\left(x+y+z\right)^2}=9\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Nhỡ may x=y=1/4 z=1/2 và các hoán vị của chúng thì sao ạ ??