Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(B=\left(x^2+y\right)\left(y+\dfrac{1}{4}\right)+x^2y^2+\dfrac{3}{4}\left(y+\dfrac{1}{3}\right)\)
\(=x^2y+\dfrac{1}{4}x^2+y^2+\dfrac{1}{4}y+x^2y^2+\dfrac{3}{4}y+\dfrac{1}{4}\)
\(=x^2y+x^2y^2+y^2+y+\dfrac{1}{4}x^2+\dfrac{1}{4}\)
\(=y\left(x^2+1\right)+y^2\left(x^2+1\right)+\dfrac{1}{4}\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(y+\dfrac{1}{2}\right)^2\)
\(C=x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\)
\(=x^2y^2+1+x^2-x^2y-y+y^2\)
\(=x^2y^2-y+x^2+y^2-x^2y+1\)
\(=y^2\left(x^2+1\right)-y\left(x^2+1\right)+x^2+1\)
\(=\left(x^2+1\right)\left(y^2-y+1\right)\)
=>\(A=\dfrac{y^2+y+\dfrac{1}{4}}{y^2-y+1}\)
b: \(=\dfrac{y^2-y+1+2y-\dfrac{3}{4}}{y^2-y+1}=1+\dfrac{2y-\dfrac{3}{4}}{y^2-y+1}>=1\)
Dấu = xảy ra khi y=3/8
( x - 1 )3 - ( x - 1 )( x2 + x + 1 ) - 3( 1 - x )x < đã sửa đề >
= x3 - 3x2 + 3x - 1 - ( x3 - 1 ) + 3x2 - 3x
= x3 - 1 - x3 + 1
= 0 ( đpcm )
A = (x + 2)3 - (x - 2)3 - 6x(2x + 1)
= x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 - 6x
= x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 - 6x
= (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x - 6x) + (8 + 8)
= -6x + 16
=> có phụ thuộc vào biến x
B = 8(x - 1)(x2 + x + 1) - (2x - 1)(4x2 + 2x + 1)
= 8(x3 - 1) - (8x3 - 1) (sử dụng hằng đẳng thức thứ 6)
= 8x3 - 8 - 8x3 + 1 = (8x3 - 8x3) + (-8 + 1) = -7
=> không phụ thuộc vào biến x
\(A=\left(x+2\right)^3-\left(x-2\right)^3-6x\left(2x+1\right)\)
\(=x^3+6x^2+12x+8-x^3+6x^2-12x+8-12x^2-6x\)
\(=-6x+16\)
Vậy biểu thức A phụ thuộc vào biến x
\(B=8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=8x^3-8-8x^3+1\)
\(-7\)
Vậy biểu thức B không phụ thuộc vào biến x
mẹo của những câu này là: kết quả cuối cùng LUÔN LÀ HỆ SỐ TỰ DO
câu a ta thấy 3(x^2-8y^3+10) có 3x10 là hstd => 30
b:có hstd 1 ở (2x-1)(x^2+x-1) 25 ở bt(x-5)^2 và hstd 2 ở 2(x+1)(x^2-x+1) và 14 ở -7(x-2)
->hstd là 1+25+2+14=42
mấy cái tách thì khai triển hết ra rồi loại hết đi :v
nếu mình nhìn thiếu gì thì bạn bỏ qua cho mn nhé. đây chỉ là mẹo thôi
mn sắp thi r. chào b. chúc b học tốt
\(\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)
\(=\left[x.\left(2x^2-3x+4\right)+2.\left(2x^2-3x+4\right)\right]-\left[x.\left(2x+1\right)-1.\left(2x+1\right)\right]\)
\(=\left(2x^3-3x^2+4x+4x^2-6x+8\right)-\left(2x^3+x-2x-1\right)\)
\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x+2x+1\)
\(=9\)
A/ x(5x-3)-x^2(x-1)+x(x^2-6x)-10+3x
=> A=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x
=> A=(x^3-x^3)+(5x^2+x^2-6x^2)+(3x-3x)-10
=> A= 0 + 0 + 0 -10
=> A=-10
Vậy giá trị ko phụ thuộc vào biến.
B/x(x^2+x+1)-x^2(x+1)-x+5
=> B=x^3+x^2+x-x^3-x^2-x+5
=> B= 0 +5
=> B= 5.
UNDERSTAND !!!
a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^3+1\right)-\left(x^3-1\right)\)
\(=x^3+1-x^3+1\)
\(=2\)
Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.
b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)
\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)
\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)
\(=27\)
Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.
c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)
\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)
\(=-65\)
Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.
d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)
\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)
\(=0\)
Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.
a, \(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)
=\(\left(5x^2+x^2-6x^2\right)+\left(3x-3x\right)+\left(x^3-x^3\right)-10\)
=-10
Vậy giá trị của biểu thức trên không phụ thuộc vào biến x.
b, \(x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
=\(x^3+x^2+x-x^3-x^2-x+5\)
=\(\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(x-x\right)+5\)
= 5
Vậy biểu thức trên không phụ thuộc vào biến x .
Giải:
\(\left(x-3\right)\left(x+2\right)+\left(x-1\right)\left(x+1\right)-\left(x-\dfrac{1}{2}\right)\left(x-\dfrac{1}{2}\right)-x^2\)
\(=x^2-x-6+x^2-1^2-\left(x-\dfrac{1}{2}\right)^2-x^2\)
\(=x^2-x-6+x^2-1-\left(x^2-x+\dfrac{1}{4}\right)-x^2\)
\(=x^2-x-6+x^2-1-x^2+x-\dfrac{1}{4}-x^2\)
\(=-6-1-\dfrac{1}{4}\)
\(=-\dfrac{29}{4}\)
Vậy ...