\(x^2y^2+y^2z^2+z^2x^2-x^2yz-y^2xz-z^2xy\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2019

Áp dụng bđt AM-GM:

\(x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xy^2z\)

\(y^2z^2+z^2x^2\ge2\sqrt{x^2y^2z^{^4}}=2xyz^2\)

\(x^2y^2+z^2x^2\ge2\sqrt{x^4y^2z^2}=2x^2yz\)

Cộng theo vế và rút gọn: \(x^2y^2+y^2z^2+z^2x^2\ge x^2yz+xy^2z+xyz^2\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2-x^2yz-xy^2z-xyz^2\ge0\left(đpcm\right)\)

14 tháng 3 2019

\(\left(xy-yz\right)^2=x^2y^2-2xy^2z+y^2z^2\ge0\)

\(\Rightarrow x^2y^2+y^2z^2\ge2xy^2z\)

Thiết lập hai BĐT còn tại tương tự và cộng theo vế và chia cho 2:

\(x^2y^2+y^2z^2+z^2x^2\ge x^2yz+y^2xz+z^2xy\)

Chuyển vế ta có đpcm.

Dấu "=" xảy ra khi \(xy=yz=zx\Leftrightarrow x=y=z\)

27 tháng 2 2020

Tham khảo:

Câu hỏi của Nguyễn Tấn Phát

link:https://olm.vn/hoi-dap/detail/214667445437.html

ib đưa link

27 tháng 2 2020

Mình cảm ơn ạ

31 tháng 7 2018

\(2x^2+2y^2+z^2+2xy+2yz+2xz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

\(\Rightarrow x=-5,y=-3,z=8\)

12 tháng 8 2018

<=>(x2+y2+z2+2xy+2yz+2xz)+(x2+2x+1)+(y2+4y+4)=0

<=>(x+y+z)2+(x+1)2+(y+2)2=0

Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\Rightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(y+2\right)^2\ge0}\)

=>\(\hept{\begin{cases}x+y+z=0\\x+1=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}z=3\\x=-1\\y=-2\end{cases}}}\)

1 tháng 8 2018

\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2xz+2yz\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}z=8\\x=-5\\y=-3\end{matrix}\right.\)

Vậy x = -5; y = -3; z = 8

25 tháng 9 2018

\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)

\(\Rightarrow\left(x^2+y^2+z^2+2xy+2xz+2yz\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

\(\left\{{}\begin{matrix}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^3\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0\)

\(\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+z=0\\x+5=0\\y+3=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}z=-\left(x+y\right)\\x=-5\\y=-3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}z=8\\x=-5\\y=-3\end{matrix}\right.\)