Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)
=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)
^_^
\(Q=x^2+6y^2-2xy-12x+2y+2017\)
\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)
\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)
\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)
Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)
\(\Rightarrow Q>0\)
Giải:
a) Ta có:
\(A=x\left(x-6\right)+10\)
\(\Leftrightarrow A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-6x+9+1\)
\(\Leftrightarrow A=\left(x^2-6x+9\right)+1\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0;\forall x\)
\(\left(x-3\right)^2+1\ge1;\forall x\)
Hay \(A\ge1;\forall x\)
\(\Leftrightarrow A>0;\forall x\)
Vậy A luôn luôn nhận giá trị dương với mọi x.
b) Ta có:
\(B=x^2-2x+9y^2-6y+3\)
\(B=x^2-2x+9y^2-6y+1+1+1\)
\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\)
Vì \(\left(x-1\right)^2\ge0;\forall x\) và \(\left(3y-1\right)^2\ge0;\forall y\)
\(\Leftrightarrow\left(x-1\right)^2+\left(3y-1\right)^2\ge0;\forall x,y\)
\(\Leftrightarrow\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1;\forall x,y\)
Hay \(B\ge1;\forall x,y\)
\(\Leftrightarrow B>0;\forall x,y\)
Vậy B luôn luôn nhận giá trị dương với mọi x, y.
A = x(x - 6) + 10
= x2 - 6x + 10
= x2 - 6x + 9 + 1
= (x2 - 6x + 9) + 1
= (x - 3)2 + 1
Vì (x - 3)2 \(\ge\) 0 với mọi x
=> (x - 3)2 + 1 > 0 với mọi x
Vậy A = = x(x - 6) + 10 luôn dương với mọi x
B = x2 - 2x + 9y2 - 6y + 3
= (x2 - 2x + 1) + (9y2 - 6y + 1) + 1
= (x - 1)2 + (3y - 1)2 +1
Vì (x - 1)2 \(\ge\) 0 với mọi x
(3y - 1)2 \(\ge\) 0 với mọi y
=> (x - 1)2 + (3y - 1)2 \(\ge\) 0 với mọi x, y
=> (x - 1)2 + (3y - 1)2 +1 > 0 với mọi x, y
Vậy B = x2 - 2x + 9y2 - 6y + 3 luôn dương với mọi x, y
Chúc bạn học tốt!
B= 2(x2+x+1/2)
= 2(x2+2x1/2+(1/2)2-(1/2)2+1/2)
= 2[(x+1/2)2+1/4) lớn hơn hoặc bằng 1/2 với mọi x
do đó B lớn hơn 0 với mọi x
\(B=2x^2+2x+1\)
\(B=2\left(x^2+x+\frac{1}{2}\right)\)(Đặt nhân tử chung)
\(B=2\left[x^2+2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{1}{2}-\left(\frac{1}{2}\right)^2\right]\)(Thêm bớt hạng tử)
\(B=2\left\{\left[x^2+2.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]+\left(\frac{1}{2}-\frac{1}{4}\right)\right\}\)(Nhóm hạng tử)
\(B=2\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\right]\)(Dùng hằng đẳng thức)
\(B=2\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\)(Phá ngoặc)
Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\)với mọi \(x\)
\(\Leftrightarrow2\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
\(\Leftrightarrow2\left(x+\frac{1}{2}\right)^2+\frac{1}{4}>0\)với mọi \(x\)
\(\Leftrightarrow B>0\)
Vậy biểu thức \(B\) luôn dương với mọi \(x\)
Câu 2:
a,x(x−6)+10x(x−6)+10
= x2−6x+10x2−6x+10
=(x−3)2+1>0(x−3)2+1>0\forall x
b, x2−2x+9y2−6y+3x2−2x+9y2−6y+3
= (x2−2x+1)+(9y2−6y+1)+1(x2−2x+1)+(9y2−6y+1)+1
=(x−1)2+(3y−1)2+1>0(x−1)2+(3y−1)2+1>0
kkkkkkkk cho mình nha
A=x^2-6x+10=x^2-6x+9+1=(x-3)^2+1
Co (x-3)^2>=0 1>0
=>A>0 voi moi x
a, Với x khác 1
\(A=\dfrac{x^2+x+1-3x^2+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}=-\dfrac{1}{x^2+x+1}\)
b, Ta có \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\Rightarrow\dfrac{-1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)
Vậy với x khác 1 thì bth A luôn nhận gtri âm
bài 1 : a. x^3 +27 -54-x^3 =-27
b. 8x^3 +y^3 -8x^3 +y^3 =2y^3
c. (2x-1+2x+2)(2x-1-2x-2)=(4x+1).(-3)=-12x-3
d. a^3 +b^3 +3ab(a+b) -3ab(a+b)=a^3+b^3
a: =x^2-6x+10
=x^2-6x+9+1
=(x-3)^2+1>0
b: =x^2-2x+1+9y^2-6y+1+1
=(x-1)^2+(3y-1)^2+1>0