\(\dfrac{1}{\sqrt{1.1999}}+\dfrac{1}{\sqrt{2.1998}}+....+\dfrac{1}{\sqrt{1999.1}}>1,999...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

\(A=\dfrac{1}{\sqrt{1.1999}}+\dfrac{1}{\sqrt{2.1998}}+...+\dfrac{1}{\sqrt{1999.1}}>\dfrac{1}{\dfrac{1+1999}{2}}+\dfrac{1}{\dfrac{2+1998}{2}}+...+\dfrac{1}{\dfrac{1999+1}{2}}\)

\(=\dfrac{1}{1000}+\dfrac{1}{1000}+...+\dfrac{1}{1000}=1,999\)

8 tháng 8 2019

Áp dụng bất đẳng thức Cô-si:

\(\frac{1}{\sqrt{1\cdot1999}}\ge\frac{1}{\frac{1+1999}{2}}=\frac{1}{1000}\)

Vì dấu "=" không xảy ra nên \(\frac{1}{\sqrt{1\cdot1999}}>\frac{1}{1000}\)

Tương tự ta có : \(\frac{1}{\sqrt{2\cdot1998}}>\frac{1}{1000};...;\frac{1}{\sqrt{1999\cdot1}}>\frac{1}{1000}\)

\(\Rightarrow\frac{1}{\sqrt{1\cdot1999}}+\frac{1}{\sqrt{2\cdot1998}}+...+\frac{1}{\sqrt{1999\cdot1}}>\frac{2000}{1000}=2>1,999\)

Vậy...

30 tháng 9 2017

Ta có: \(\left\{{}\begin{matrix}\sqrt{a}+\sqrt{b}+\sqrt{c}=2\\\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}=\dfrac{1}{\sqrt{abc}}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=4\\\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\end{matrix}\right.\)

\(\Rightarrow a+b+c=2\)

Ta cần chứng minh:

\(b+c>4abc\)

\(\Leftrightarrow b+c-4\left(2-b-c\right)bc>0\)

\(\Leftrightarrow\left(b-4bc+4bc^2\right)+\left(c-4bc+4cb^2\right)>0\)

\(\Leftrightarrow\left(\sqrt{b}-2c\sqrt{b}\right)^2+\left(\sqrt{c}-2b\sqrt{c}\right)^2>0\) (đúng vì dấu = không xảy ra).

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

1 tháng 10 2017

Rất đơn giản :v

Từ gải thiết, ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}=1\Leftrightarrow\dfrac{a+b}{ab}=1\Leftrightarrow a+b=ab\Leftrightarrow ab-a-b+1=1\Leftrightarrow\left(a-1\right)\left(b-1\right)=1\Rightarrow\sqrt{\left(a-1\right)\left(b-1\right)}=1\)

Mặt khác: \(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\)

\(\Leftrightarrow a+b=a-1+b-1+2\sqrt{\left(a-1\right)\left(b-1\right)}\)

\(\Leftrightarrow a+b-a-b+1+1=2\sqrt{\left(a-1\right)\left(b-1\right)}\)

\(\Leftrightarrow2=2\)(Điều luôn đúng :v)

Vậy ta có đpcm

1 tháng 10 2017

Cho sưa đề tí nha

CMR : \(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\)