Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:a2+b2+c2=ab+bc+ac tương đương 2(a2+b2+c2) - 2(ab+bc+ac) =0
suy ra 2a2 +2b2 +2c2 -2ab-2bc-2ac=0
suy ra (a2 -2ab+b2) +(b2-2bc+c2)+(a2-2ac+c2)=0
suy ra (a-b)2+(b-c)2+(a-c)2=0 suy ra (a-b)2=0 tương đương a-b=0 suy ra a=b (1)
(b-c)2=0 tương đương b-c=0 suy ra b=c (2)
(a-c)2 =0 tương đương a-c=0 suy ra b=c (3)
từ (1);(2);(3)suy ra a=b=c.Mà a=b=c=9 suy ra a=b=c=3(đpcm)
bai 1 : ve trai : a2 + b2 + c2 = a.a + b.b + c.c = (a.b) + (b.c) +(c.a) = ab + bc +ca = ve phai
ma a+b+c=9 suy ra : 3+3+3=9 suy ra a ;b;c deu bang 3
vi ve trai = ve phai ma a ;b ;c =3 vay dang thuc duoc chung minh
(a^3 + b^3)/2ab + (b^3 + c^3)/2bc + (c^3 + a^3)/2ac >= a + b + c
<=> a^2/2b + b^2/2a + b^2/2c + c^2/2c + c^2/2a + a^2/2c >= a + b + c
Áp dụng BĐT Côsi cho 2 số dương, ta có:
a^2/b + b >= 2√(a^2/b.b) = 2a
<=> (a^2/b + b)/2 >= a
<=> a^2/2b + b/2 >= a
<=> a^2/2b >= a - b/2 (1)
CM tương tự, ta có:
a^2/2c >= a - c/2 (2)
b^2/2a >= b - a/2 (3)
b^2/2c >= b - c/2 (4)
b^2/2c >= c - a/2 (5)
c^2/2b >= c - b/2 (6)
Công các vế của BĐT (1), (2), (3), (4), (5), (6), ta được:
a^2/2b + a^2/2c + b^2/2a + b^2/2c + b^2/2c + c^2/2b >= a - b/2 + b - a/2 + b - c/2 + a - c/2 + c - a/2 + c - b/2
<=> a^2/2b + a^2/2c + b^2/2a + b^2/2c + b^2/2c + c^2/2b >= a + b + c
=> (a^3 + b^3)/2ab + (b^3 + c^3)/2bc + (c^3 + a^3)/2ac >= a + b + c
Dấu đẳng thức xảy ra khi a = b = c
a. \(a^3+a^2c-abc+b^2c+b^3\)
<=> \(\left(a^3+b^3\right)+c\left(a^2-ab+b^2\right)\)
<=> (\(\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
<=> \(\left(a+b+c\right)\left(a^2-ab+b^2\right)\)
vì a+b+c =0 => đpcm
b. 2(a+1)(b+1)=(a+b)(a+b+2)
<=> \(2\left(ab+a+b+1\right)=\)\(a^2+ab+2a+ab+b^2+2b\)
<=> \(2ab+2a+2b+2=a^2ab+2a+ab+b^2+2b\)
<=> \(a^2+b^2=2\)=> đpcm
áp dụng bất đẳng thức côsi cho hai số dương
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=2\frac{a}{c}\)
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\frac{b}{a}\)
\(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge2\frac{c}{b}\)
cộng vế theo vế
\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)
dấu "=" xảy ra khi \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{c^2}{a^2}\Leftrightarrow a=b=c\)
\(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2\)
\(=\left(ab-ac\right)\left(a^2+b^2+c^2+2bc-2ab-2ca\right)\)
\(+\left(ac-bc\right)\left(a^2+b^2+c^2+2ab-2bc-2ca\right)\)
\(=-ac^3+\left(2a^2-ab\right)c^2+\left(ab^2-a^3\right)c+ab^3-2a^2b^2+a^3b\)
\(+\left(a-b\right)c^3+\left(2b^2-2a^2\right)c^2+\left(-b^3-ab^2+a^2b+a^3\right)c\)
\(=-bc^3+\left(2b^2-ab\right)c^2+\left(a^2b-b^3\right)c+ab^3-2a^2b^2+a^3b\)
\(=-b\left(c-a\right)\left(a^2+b^2+c^2+2ca-2ab-2bc\right)\)
\(=b\left(a-c\right)\left(a+c-b\right)^2\)(đpcm)