Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(20\left(a^2+b^2\right)+2c^2=16a^2+c^2+16b^2+c^2+4a^2+4b^2\)
\(\ge8ab+8ac+8bc=8\left(Am-Gm\right)\)
=> \(10\left(a^2+b^2\right)+c^2\ge4\)
Hình như đề bị sai
Áp dụng BĐT cô-si:
a^4+1>=2a^2
suy ra a^4 +1+2b^2>=2a^2+2b^2>=4ab(Cô-si)
Vậy a^4+1+2b^2>=4ab
BĐT cô-si:a^4+b^4>=4a^2b^2
Vậy 2a^4+2b^2+b^4+1>=4a^2b^2+4ab
Suy ra 2a^4+1+(b^2+1)^2>=(2ab+1)^2
a)\(a^2+ab+b^2=a^2+\dfrac{2ab}{2}+\left(\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\)
\(=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\forall a,b\)
b)\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\forall a,b\)
Biến đổi tương đương:
\(\Leftrightarrow a^6+a^5b+ab^5+b^6\ge a^6+a^4b^2+a^2b^4+b^6\)
\(\Leftrightarrow a^5b-a^4b^2-a^2b^4+ab^5\ge0\)
\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)
\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)
Ta co: a3b2=(a2b2)a , a2b3=(a2b2)b => a3b2>a2b3( vi a>b) (1)
b3c2=(b2c2)b , b2c3=(b2c2)c => b3c2>b2c3( vi b>c) (2)
c3a2=(a2c2)c , a3c2=(a2c2)a => c3a2<a3c2 ( vi c<a) (3)
Vi b+c>a ( bdt trong tam giac)
=> dpcm
Bai nay phai xet trong tam giac thi moi dung
Lời giải:
Theo BĐT Schur bậc 3:
\(abc\geq (a+b-c)(b+c-a)(c+a-b)=(3-2a)(3-2b)(3-2c)\)
\(\Leftrightarrow abc\geq 27+12(ab+bc+ac)-18(a+b+c)-8abc=-27+12(ab+bc+ac)-8abc\)
\(\Rightarrow 9abc\geq 12(ab+bc+ac)-27\Rightarrow abc\geq \frac{4}{3}(ab+bc+ac)-3\)
Do đó:
\(a^2+b^2+c^2+abc\geq a^2+b^2+c^2+\frac{4}{3}(ab+bc+ac)-3\)
\(=(a+b+c)^2-\frac{2}{3}(ab+bc+ac)-3=6-\frac{2}{3}(ab+bc+ac)\)
Mặt khác theo hệ quả quen thuộc của BĐT AM-GM:
\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\)
\(\Rightarrow a^2+b^2+c^2+abc\geq 6-\frac{2}{3}(ab+bc+ac)\geq 6-\frac{2}{3}.3=4\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Nếu bạn không được sử dụng thẳng BĐT Schur bậc 3 thì có thể CM nó thông qua BĐT AM-GM ngược dấu.
Vì \(a^2\)\(\ge\)0; \(b^2\)\(\ge\)0; 1>0 nên ta áp dụng bất đẳng thức Cosi cho từng cặp ta có:
\(a^2\)+\(b^2\)\(\ge\)2\(\sqrt{a^2b^2}\)=2ab (1)
\(a^2\)+1\(\ge\)2\(\sqrt{a^21}\)=2a (2)
\(b^2\)+1\(\ge\)2\(\sqrt{b^2.1}\)=2b (3)
Cộng vế với vế của (1); (2) và (3) ta có:
2\(a^2\)+2\(b^2\)+2\(\ge\)2ab+2a+2b
\(a^2\)+\(b^2\)+1\(\ge\)ab+a+b( chia cả 2 vế của Bất phương trình cho 2)
Dấu = xảy ra khi a=b=1
Ta có : a^2 + b^2 > 2ab
b^2 + 1 > 2b
a^2 + 1 > 2a
=> 2(a^2 + b^2 + 1) > (2ab + 2a + 2b)
<=> (a^2 + b^2 + 1) > ab + a + b
\(\dfrac{a^4+b^4}{2}+a^2+b^2\ge a^2b^2+a^2+b^2\)
Áp dụng tiếp BĐT \(x^2+y^2+z^2\ge xy+xz+yz\) ta có:
\(\left(ab\right)^2+a^2+b^2\ge ab.a+ab.b+ab=ab\left(a+b+1\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=0\) hoặc \(a=b=1\)