K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

ta có a^3+5a= a^3-a+6a

                   = a(a^2-1)+6a

                    = a(a-1)(a+1)+6a

vì với a thuộc z thì a, a-1,a+1 là 3 số nguyên liên tiếp nên trong 3 số có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2

=> a(a-1)(a+1) chia hết cho 2 và 3

mà (2;3)=1 nên a(a-1)(a+1) chia hết cho 6

lại có 6a chia hết cho 6 với mọi a thuộc z 

=> a(a-1)(a+1) +6a chia hết cho 6

hay a^3+5a chia hết cho 6

31 tháng 7 2017

cm bằng qui nạp 
thử n=1 ta có n^3+5n = 6 => dúng 
giả sử đúng với n =k 
ta cm đúng với n= k+1 
(k+1)^3+5(k+1) = k^3 +5k + 3k^2 +3k +6 
vì k^3 +5k chia hết cho 6, và 6 chia hết cho 6 nên ta cần cm 3k^2 +3k chia hết cho 6 <=> k^2 +k chia hết cho 2 
mà k(k +1) chia hết cho 2vì nếu k lẻ thì k+1 chẳn => chia hết 
nế k chẳn thì đương nhiên chia hết 
vậy đúng n= k+ 1 
theo nguyên lý qui nạp ta có điều phải chứng minh

a: a^3-a=a(a^2-1)

=a(a-1)(a+1)

Vì a;a-1;a+1 là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

=>a^3-a chia hết cho 6

17 tháng 10 2021

Đề sai rồi bạn

25 tháng 10 2017

a3 + b3 + c3 + 5a + 5b + 5c

= a3 - a + b3 - b + c3 - c + 6a + 6b + 6c

= a(a2 - 1) + b(b2 - 1) + c(c2 - 1) + 6a + 6b + 6c

= a(a - 1)(a + 1) + b(b - 1)(b + 1) + c(c - 1)(c + 1) + 6(a + b + c)

a;b;c \(\in Z\) nên a(a - 1)(a + 1); b(b - 1)(b + 1); c(c - 1)(c + 1) là tích 3 số nguyên liên tiếp

=> a(a - 1)(a + 1); b(b - 1)(b + 1); c(c - 1)(c + 1) chia hết cho 3

Mà 6(a + b + c) chia hết cho 6

Do đó a(a - 1)(a + 1) + b(b - 1)(b + 1) + c(c - 1)(c + 1) + 6(a + b + c) chia hết cho 6

hay a3 + b3 + c3 + 5a + 5b + 5c chia hết cho 6 (đpcm)

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

3 tháng 1 2017

PTĐT thành NT :

\(=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3, mà ƯCLN(2;3)=1 nên nó chia hết cho 2.3 = 6

Vậy ...

9 tháng 2 2021

= (a+1)(a2+2a)

= (a+1)(a+2)a =a(a+1)(a+2)

Vì 3 số tự nhiên liên tục sẽ chia hết cho 6 => a2(a+1)(a+2) chia hết cho 6 với mọi a thuộc Z