Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(n=1\Leftrightarrow a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)⋮\left(a+b\right)\)
Giả sử \(n=k\Leftrightarrow\left(a^{2k+1}+b^{2k+1}\right)⋮\left(a+b\right)\)
Với \(n=k+1\)
Cần cm: \(\left(a^{2k+3}+b^{2k+3}\right)⋮\left(a+b\right)\left(1\right)\)
\(\Leftrightarrow a^{2k+3}+b^{2k+3}=a^{2k+1}\cdot a^2+b^{2k+1}\cdot b^2\\ =a^{2k+1}\cdot a^2+b^{2k+1}\cdot a^2-b^{2k+1}\cdot a^2+b^{2k+1}\cdot b^2\\ =a^2\left(a^{2k+1}+b^{2k+1}\right)-b^{2k+1}\left(a^2-b^2\right)\)
Do \(\left(a^{2k+1}+b^{2k+1}\right)⋮\left(a+b\right);\left(a^2-b^2\right)⋮\left(a-b\right)\)
Do đó \(\left(1\right)\) luôn đúng
Theo pp quy nạp suy ra đpcm
Bài 3:
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)
`1)(a+b+c)^2=3(a^2+b^2+c^2)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2`
`<=>2ab+2bc+2ca=2a^2+2b^2+2c^2`
`<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
Mà `(a-b)^2+(b-c)^2+(c-a)^2>=0`
Vậy dấu "=" xảy ra chỉ có thể là `a=b=c`
`2)(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2ab+2bc+2ca=2a^2+2b^2+2c^2`
`<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
Mà `(a-b)^2+(b-c)^2+(c-a)^2>=0`
Vậy dấu "=" xảy ra chỉ có thể là `a=b=c`
Vậy nếu `a=b=c` thì ....
a) VT = (a - 1)(a - 2) + (a - 3)(a + 4) - (2a2 + 5a - 34)
= a2 - 2a - a + 2 + a2 + 4a - 3a - 12 - 2a2 - 5a + 34
= (a2 + a2 - 2a2) - (2a + a - 4a + 3a + 5a) + (2 - 12 + 34)
= -7a + 24
=> VT = VP
=> đpcm
b) VT = (a - b)(a2 + ab + b2) - (a + b)(a2 - ab + b2)
= (a3 - b3) - (a3 + b3)
= a3 - b3 - a3 - b3
= -2b3
=> VT = VP
=> Đpcm
Câu b bn xem đề lại (a + b)(a2 - ab + b2) ko phải là (a + b)(a2 - ab - b2)
Ta có: \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)\)
\(=a\left(b^2c^2-b^2-c^2+1\right)+b\left(a^2c^2-a^2-c^2+1\right)\)
\(+c\left(a^2b^2-a^2-b^2+1\right)\)
\(=ab^2c^2-ab^2-ac^2+a+ba^2c^2-a^2b-bc^2+b\)
\(+ca^2b^2-a^2c-b^2c+c\)
\(=\left(ab^2c^2+ba^2c^2+ca^2b^2\right)+\left(a+b+c\right)\)
\(-\left(ab^2+ac^2+a^2b+bc^2+a^2c+b^2c\right)\)
\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)\)\(-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\)
\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)
\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(=abc\left(bc+ac+ab\right)+abc+3abc\)\(-abc\left(ab+bc+ca\right)=4abc\)
Vậy \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)=4abc\)(đpcm)
CMR :1,a2+b2=<a+b>2-2ab
2,a3+b3=<a+b>3-3ab.<a+b>
3,a3-b3=<a-b>3+3ab.<a+b>
Cho :a+b=1
Tính :A=a3+b3+3ab
2
Ta có:
VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)
=a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)
=a3+b3=VT(dpcm)
1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)
Ta có:
\(VP=\left(a+b\right)\left(a^{2n}-a^{2n-1}.b+a^{2n-2}.b^2+...+a^{2n}.b^{2n-2}-a.b^{2n-1}+b^{2n}\right)\)
\(=a^{2n+1}-a^{2n}.b+a^{2n-1}b^2+...+a^2.b^{2n-1}+a.b^{2n}+a^{2n}.b-a^{2n-1}.b^2+....-a.b^{2n}+b^{2n+1}\)
\(=a^{2n+1}+b^{2n+1}=VT\)
Vậy.....................(đpcm)
Chúc bạn học tốt!!!
Ta có:VT=\(\left(a+b\right)\left(a^{2n}-a^{2n-1}b+...-b^{2n}\right)\)
=\(a^{2n+1}-a^{2n}b+...+a^{2n}b+b^{2n}\)(Triệt tiêu hết )
=\(a^{2n+1}+b^{2n+1}\)(đpcm)