Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(\Rightarrow VT=a^2c^2+b^2c^2+a^2d^2+b^2d^2=VP\left(đpcm\right)\)
b, Tham khảo:Chứng minh hằng đẳng thức:(a+b+c)3= a3 + b3 + c3 + 3(a+b)(b+c)(c+a) - Hoc24
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)
\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Ta có:
\(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)
Biến đổi vế trái ta có:
VT = ( a 2 + b 2 )( c 2 + d 2 )
= a 2 c 2 + a 2 d 2 + b 2 c 2 + b 2 d 2
= ( a 2 c 2 + 2abcd + b 2 d 2 ) + ( a 2 d2 – 2abcd + b 2 c 2 )
= a c + b d 2 + a d - b c 2 =VP
Vế phải bằng vế trái nên đẳng thức được chứng minh.
-Áp dụng BĐT AM-GM ta có:
\(\left\{{}\begin{matrix}\dfrac{1}{4}a^2+b^2\ge ab\\\dfrac{1}{4}a^2+c^2\ge ac\\\dfrac{1}{4}a^2+d^2\ge ad\end{matrix}\right.\)
-Cộng các vế, ta được:
\(\dfrac{3}{4}a^2+b^2+c^2+d^2\ge ab+ac+ad\)
\(\Rightarrow\dfrac{3}{4}a^2+b^2+c^2+d^2+\dfrac{1}{4}a^2\ge ab+ac+ad\) (vì \(\dfrac{1}{4}a^2\ge0\forall a\))
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge ab+ac+ad\left(đpcm\right)\)
-Dấu "=" xảy ra khi \(a=b=c=d=0\)
\(ac+bd=0\)
\(=\) \(abc^2+abd^2+cda^2+cdb^2\)
\(=\) \(ac\left(bc+ad\right)+bd\left(ad+bc\right)\)
\(=\) \(\left(bc+ad\right)\left(ac+bd\right)=0\) \([\) vì ac+bd = 0 \(]\)
\(\left(ad+bc\right)\left(a^2d^2+b^2c^2\right)=0\)
\(\Rightarrow a^3d^3+adb^2c^2+bca^2d^2+b^3c^3=0\)
\(\Rightarrow a^3d^3+abcd\left(bc+ad\right)+b^3c^3=0\)
\(\Rightarrow a^3d^3+abcd.0+b^3c^3=0\)
\(\Rightarrow a^3d^3+b^3c^3=0\)
Ta có : (a2 + b2 ) . ( c2 + d2 )
= a2c2 + b2c2 + a2d2 + b2d2
= (a2c2 + 2abcd + b2d2) + (a2d2 - 2adbc + b2c2)
= (ac + bd)2 + (ad - bc)2
Vậy (a2 + b2 ) . ( c2 + d2 ) = ( ac + bd )2 + ( ad - bc )2 (đpcm)
Tham khảo nha bạn:
Câu hỏi của Assasin red - Toán lớp 9 - Học toán với OnlineMath
....
Giúp tôi giải toán