![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1,\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2\left(b-1\right)^2\ge0\)(Luôn đúng)
Dấu '=' xảy ra khi \(a=b=1\)
2/Bổ sung đk a,b >= 0 (nếu a,b < 0,cho a=b=-2 suy ra a^3 + b^3 + 1 -3ab = -27 < 0)
Ta chứng minh BĐT \(x^3+y^3+z^3\ge3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\) (đúng)
Áp dụng vào,suy ra: \(a^3+b^3+1^3-3ab\ge3ab-3ab=0\)
Dấu "=" xảy ra khi a = b = c = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Biến đổi tương đương:
\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)
\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)
\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)
Vậy BĐT ban đầu đúng
Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)
Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương
Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:
\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)
\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có a^2+b^2+1>=ab+a+b (1)
<=> 2a^2+2b^2+2>=2ab+2a+ab
<=>2a^2+2b^2+2-2ab-2a-2b>=0
<=>(a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)>=0
<=>(a-b)^2+(a-1)^2+(b-1)^2>=0 luôn đúng
Vây BĐT(1) đúng (đpcm)
a2+b2+1-ab-a-b>=0
2a2+2b2+2-2ab-2a-2b>=0
(a-b)2+(a-1)2+(b-1)2>=0
Dấu = xảy ra khi a=b
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
c) Áp dụng BĐT cô si cho 2 hai số dương \(a;b\) ta có:
\(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" xảy ra khi \(\Leftrightarrow a=b\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(a^2,b^2,c^2\le1\Leftrightarrow-1\le a,b,c\le1\)
\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)
\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1\ge0\left(1\right)\)
Ta lại có: \(\frac{\left(a+b+c+1\right)^2}{2}\ge0\)
\(\Leftrightarrow\frac{a^2+b^2+c^2+1+2\left(ab+bc+ca+a+b+c\right)}{2}\ge0\)
\(\Leftrightarrow\frac{1+1+2\left(ab+bc+ca+a+b+c\right)}{2}\ge0\)
\(\Leftrightarrow ab+bc+ca+a+b+c+1\ge0\left(2\right)\)
Lấy (1) + (2) vế theo vế ta được
\(abc+2\left(ab+bc+ca+a+b+c+1\right)\ge0\)
Dấu = xảy ra khi \(\hept{\begin{cases}a=b=0\\c=-1\end{cases}}\) và các hoán vị của nó
2(1+a+b+c+ab+bc+ac)
=2(a^2+b^2+c^2+ab+bc+ac)
=(a^2+b^2+c^2+2ab+2bc+2ac)+2(a+b+c) +1
=(a+b+c)^2+2(a+b+c)+1
=(a+b+c+1)^2 >= 0
đúng thì cho 1 tíck nhé
I don't know