K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

a) ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)

\(=n^2+5n-n^2-2n+3n-6=6n-6=6\left(n-1\right)⋮6\)

\(\Rightarrow n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho \(6\)

vậy \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho \(6\) (đpcm)

b) ta có : \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)=n^2-1-\left(n^2-5n-7n+35\right)\)

\(=n^2-1-n^2+5n+7n-35=12n-36=12\left(n-3\right)⋮3⋮4\)

\(\Rightarrow\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\) chia hết cho \(4\)\(3\)

vậy \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\) chia hết cho \(4\)\(3\) (đpcm)

22 tháng 8 2017

\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\\ =n^2+5n-\left(n^2+2n-3n-6\right)\\ =n^2+5n-\left(n^2-n-6\right)\\ =n^2+5n-n^2+n+6\\ =\left(n^2-n^2\right)+\left(5n+n\right)+6\\ =6n+6\\ =6\left(n+1\right)⋮6\)

vậy ...

\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\\ =n^2-1-\left[\left(n-6\right)^2-1\right]\\ =n^2-1-\left(n-6\right)^2+1\\ =n^2-\left(n-6\right)^2\\ =\left(n+n-6\right)\left(n-n+6\right)\\ =6\left(2n-6\right)\\ =6\cdot2\left(n-3\right)\\ =12\left(n-3\right)⋮4\text{ và }3\)

vậy ...

5 tháng 7 2018

a, \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-n^2-2n+3n+6=6n+6=6\left(n+1\right)⋮6\) (đpcm)

b, \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)=n^2-1-n^2+5n+7n-35=12n-36=12\left(n-3\right)⋮12\) (đpcm)

15 tháng 7 2016

a.

n(n + 5) - (n - 3)(n + 2)

= n2 + 5n - n2 - 2n + 3n + 6

= (n2 - n2) + (5n - 2n + 3n) + 6

= 6n + 6

= 6(n + 1)

Vậy n(n + 5) - (n - 3)(n + 2) chia hết cho 6.

b.

(n - 1)(n + 1) - (n - 7)(n - 5)

= n2 + n - n - 1 - n2 + 5n + 7n - 35

= (n2 - n2) + (n - n + 5n + 7n) - (1 + 35)

= 12n - 36

= 12(n - 3)

Vậy (n - 1)(n + 1) - (n - 7)(n - 5) chia hết cho 12.

15 tháng 7 2016

a) n(n+5) - (n - 3)(n + 2) = n2 + 5n - n2 + 3n - 2n - 6

                                       =  6n - 6 = 6(n - 1) chia hết cho 6

b) (n - 1)(n + 1) - (n - 7)(n - 5) = n2 - 1 - n2 + 7n + 5n - 35

    = 12n - 36 = 12(n - 3) chia hết cho 12

 

15 tháng 7 2016

a, n(n+5) - (n-3)(n+2)

= n2 + 5n - (n2 + 2n - 3n - 6)

= n2 + 5n - n2 - 2n + 3n + 6

= 6n + 6

= 6(n + 1) chia hết cho 6 (Đpcm)

b, (n-1)(n+1) - (n-7)(n-5)

= n2 + n - n - 1 - (n2 - 5n - 7n + 35)

= n2 - 1 - n2 + 12n - 35

= 12n - 36

= 12(n - 3) chia hết cho 12 (Đpcm)

15 tháng 7 2016

a)   n(n+5)-(n-3)(n+2)

  =n^2+5n-(n^2+2n-3n+6)

  =n^2+5n-n^2-2n+3n-6

  =6n-6

  =6(n-1) chia het cho 6 voi moi n thuoc z

b)  (n-1)(n+1)-(n-7)(n-5)

  =n^2+n-n-1-(n^2-5n-7n+35)

  =n^2-1-n^2+12n-35

  =12n-36

  =12(n-3) chia het cho 12 voi moi n thuoc z

24 tháng 6 2018

6   \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)

vì n,n-1 là 2 số nguyên lien tiếp  \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)

  n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)

\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)

7   \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)

\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)

\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)

\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)

\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

4 tháng 4 2017

B=n(n4-4n2+4)-n3 = n5-4n3+4n-n3=n5-5n3+4n=n(n4-5n2+4)=n(n4-n2-4n2+4)=n[n2(n2-1)-4(n2-1)]=n(n2-1)(n2-4)=n(n-1)(n-2)(n+1)(n+2)

=> B=(n-2)(n-1).n(n+1)(n+2)

Nhận thấy, các số (n-2); (n-1); n; (n+1) và (n+2) là 5 số tự nhiên liên tiếp nên ít nhất phải có 2 số là số chẵn và 1 số phải có tận cùng là 5 hoặc 0

=> Số tận cùng của B là 0

=> B chia hết cho 10 với mọi n thuộc Z

4 tháng 4 2017

cảm ơn bạn nhiều

1 tháng 7 2021

a) Ta có : n3 + 3n2 + 2n

= n(n2 + 3n + 2) 

= n(n + 1)(n + 2) \(⋮\)6 (tích 3 số nguyên liên tiếp) (đpcm)

b) A = 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + .... + 295 + 296 + 297 + 298 + 299

= (1 + 2 + 22 + 23 + 24) + 25(1 + 2 + 22 + 23 + 24) + ... + 295(1 + 2 + 22 + 23 + 24)

= 31 + 25.31 + .. + 295.31

= 31(1 + 25 + ... + 295\(⋮31\)(đpcm) 

c) Ta có 49n + 77n - 29n - 1

= (49n - 1) + (77n - 29n

= (49 - 1)(49n - 1 - 49n - 2 + .... - 1) + (77 - 29)(77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) 

= 48(49n - 1 - 49n - 2 + .... - 1) + 48(77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) 

= 48(49n - 1 - 49n - 2 + .... - 1 + 77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) \(⋮\)48 (đpcm) 

AH
Akai Haruma
Giáo viên
5 tháng 10 2017

Lời giải:

a)

\(A=11^{n+2}+12^{2n+1}\)

Ta thấy \(12^2\equiv 11\pmod {133}\Rightarrow 12^{2n+1}\equiv 11^n.12\pmod {133}\)

Do đó \(A=11^{n+2}+12^{2n+1}\equiv 11^{n+2}+11^n.12\pmod {133}\)

\(\Leftrightarrow A\equiv 11^n(11^2+12)\equiv 11^n.133\equiv 0\pmod {133}\)

Vậy \(A\vdots 133\) (đpcm)

b) Đề bài không rõ

c)

Ta thấy: \(5^{2}=25\equiv 6\pmod {19}\)

\(\Rightarrow 7.5^{2n}\equiv 7.6^n\pmod {19}\)

\(\Rightarrow 7.5^{2n}+12.6^n\equiv 7.6^n+12.6^n\equiv 19.6^n\equiv 0\pmod {19}\)

Vậy \(7.5^{2n}+12.6^n\vdots 19\) (đpcm)