Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sin (B+C) = Sin (180-A) = Sin A
b) Cos (A+B) = Cos ( 180-A) = Cos A
c) Sin (\(\dfrac{B+C}{2}\)) = Sin \(\left(\dfrac{180-A}{2}\right)\)= Sin \(\left(90^0-\dfrac{A}{2}\right)\)= Cos \(\dfrac{A}{2}\)
d) Tan \(\left(\dfrac{A+C}{2}\right)\)= Tan\(\left(\dfrac{180-B}{2}\right)\)=Tan\(\left(90^0-\dfrac{B}{2}\right)\)= Cot \(\dfrac{B}{2}\)
f/
\(sin2A+sin2B+sin2C=2sin\left(A+B\right).cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC\left(cos\left(A-B\right)+cosC\right)\)
\(=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)
\(=4sinC.sinA.sinB\)
g/
\(cos^2A+cos^2B+cos^2C=\frac{1}{2}+\frac{1}{2}cos2A+\frac{1}{2}+\frac{1}{2}cos2B+cos^2C\)
\(=1+\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C\)
\(=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)
\(=1-cosC.cos\left(A-B\right)+cos^2C\)
\(=1-cosC\left(cos\left(A-B\right)-cosC\right)\)
\(=1-cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)
\(=1-2cosC.cosA.cosB\)
d/ \(sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)
\(=2cos\frac{C}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)\)
\(=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)
e/
\(cosA+cosB+cosC=2cos\frac{A+B}{2}cos\frac{A-B}{2}+1-2sin^2\frac{C}{2}\)
\(=1+2sin\frac{C}{2}.cos\frac{A-B}{2}-2sin^2\frac{C}{2}\)
\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)
\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)
\(=1+4sin\frac{C}{2}.sin\frac{A}{2}sin\frac{B}{2}\)
a) ta có : A+B+C=180=\(\pi\)
=>B+C= \(\pi\) - A
=> sin (B+C)=Sin(\(\pi\)-A)=SinA
b) tương tự:
cos( A+B)= Cos (\(\pi\)-C)=-cosC
c) ta có A+B+C =\(\pi\)=>\(\frac{A}{2}\)+\(\frac{B}{2}\)+\(\frac{C}{2}\)=\(\frac{\pi}{2}\)
=> sin (\(\frac{B+C}{2}\))=sin(\(\frac{\pi}{2}\)-\(\frac{A}{2}\))=cos(\(\frac{A}{2}\))
d) tương tự:
tan \(\frac{A+C}{2}\)=tan(\(\frac{\pi}{2}\)-\(\frac{B}{2}\))= cot\(\frac{B}{2}\)
===> đpcm
\(A=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)
\(B=\frac{cosa}{sina}\left(\frac{1+sin^2a}{cosa}-cosa\right)=\frac{cosa}{sina}\left(\frac{1+sin^2a-cos^2a}{cosa}\right)=\frac{cosa}{sina}.\frac{2sin^2a}{cosa}=2sina\)
\(C=\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cos2x.cosx}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)
\(D=\frac{2sinx.cosx.\left(-tanx\right)}{-tanx.sinx}-2cosx=2cosx-2cosx=0\)
\(E=cos^2x.cot^2x-cot^2x+cos^2x+2cos^2x+2sin^2x\)
\(E=cot^2x\left(cos^2x-1\right)+cos^2x+2=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+2=2\)
\(F=\frac{sin^2x\left(1+tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{sin^2x}{cos^2x}=tan^2x\)
Câu G mẫu số có gì đó sai sai, sao lại là \(2sina-sina?\)
\(H=sin^4\left(\frac{\pi}{2}+a\right)-cos^4\left(\frac{3\pi}{2}-a\right)+1=cos^4a-sin^4a+1\)
\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1=cos^2a-\left(1-cos^2a\right)+1=2cos^2a\)
a ) \(\sin\frac{A+B}{2}=\sin\frac{180-C}{2}=\sin\left(90-\frac{C}{2}\right)=\cos\frac{C}{2}\)
b ) Bạn xem có nhầm đề ko ?