
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Bài 2:
Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)
1:
\(n^2+4n+3\)
\(=n^2+3n+n+3\)
\(=\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
Vì k+1;k+2 là hai số nguyên liên tiếp
nên \(\left(k+1\right)\left(k+2\right)⋮2\)
=>\(4\left(k+1\right)\left(k+2\right)⋮8\)
hay \(n^2+4n+3⋮8\)
2: \(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)
=>\(k\left(k+1\right)\left(k+2\right)⋮6\)
=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)
hay \(n^3+3n^2-n-3⋮48\)

Bài 1:
a: \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\cdot55⋮11\)
b: \(10^9+10^8+10^7\)
\(=10^7\left(10^2+10+1\right)=10^7\cdot111⋮111\)

Ta phân tích biểu thức đã cho ra nhân tử :
A = n4−4n3−4n2+16nA
=[n4−4n3]−[4n2−16n]
=n3(n−4)−4n(n−4)
=n(n−4)[n2−4]
=n(n−2)(n+2)(n−4)
Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có :
A=(2k+2)(2k)(2k+4)(2k−2)
=16k(k−1)(k+1)(k+2)
=16(k−1)(k)(k+1)(k+2)
Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24
Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm
Ta phân tích biểu thức đã cho ra nhân tử :
A = n4−4n3−4n2+16nA
=[n4−4n3]−[4n2−16n]
=n3(n−4)−4n(n−4)
=n(n−4)[n2−4]
=n(n−2)(n+2)(n−4)
Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có :
A=(2k+2)(2k)(2k+4)(2k−2)
=16k(k−1)(k+1)(k+2)
=16(k−1)(k)(k+1)(k+2)
Ta nhận thấy (k−1)(k)(k+1)(k+2) là tích của bốn số nguyên dương liên tiếp, tích này chia hết cho 2.3.4 = 24
Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm

a,
$5^5-5^4+5^3$
$=5^3(5^2-5+1)$
$=5^3 . 21$
Mà $21 \vdots 7$
$\to 5^3 . 21 \vdots 7$
Nên $5^5-5^4+5^3 \vdots 7$ ( đpcm)
a) 55 - 54 + 53 = 53 ( 52 - 5 + 1)
= 53 . 21
Mà 21 chia hết cho 7 nên 53 . 21 chia hết cho 7
b) 76 + 75 - 74 = 74( 72 + 7 -1)
= 74 . 55
Mà 55 chia hết cho 11 nên 74 . 55 chia hết cho 11
Ý c tương tự như trên nhé!!
d) 106 - 57 = (2.5)6 - 57
= 26 . 56 - 57
= 56 ( 26 - 5)
= 56 . 59 chia hết cho 59
e) 3n+2 - 2n+2 + 3n - 2n Bạn viết sai nên mik sửa như này nha)
= 3n . 32 - 2n . 22 + 3n - 2n
= ( 3n . 32 + 3n) - (2n . 22 + 2n )
= 3n( 32 + 1) - 2n ( 22 + 1)
= 3n . 10 - 2n . 5
Ta thấy 10 chia hết cho 10 nên 3n . 10 chia hết cho 10 (1)
2 . 5 chia hết cho 10 nên 2n . 5 chia hết cho 10 (2)
Từ (1) và (2) => 3n . 10 - 2n .5 chia hết cho 10 với mọi n thuộc N*
vậy.......
f) 817 - 279 - 913
= (34)7 - ( 33)9 - (32)13
= 328 - 327 - 326
(đến đây làm tương tự ý a với ý b nhé)
Mik thấy lần sau nếu ý nào k làm đc bạn mới hỏi nhé hoặc k biết làm hết thì hỏi từng ý 1 thôi chứ bn hỏi nhiều như này người ta ngại trả lời lắm, mik cũng ngại nữa.
Nãy giờ mik viết mỏi tay mỏi mắt lắm rồi bn nhớ k cho mik nhé!!!
a) \(n^5-n\)
\(=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left[\left(n^2-4\right)+5\right]\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Vì \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)là tích của 5 số liên tiếp nên tích này chia hết cho 2; 3; 5
Mà \(\left(2;3;5\right)=1\)\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮\left(2\cdot3\cdot5\right)=30\)(1)
Vì \(n\left(n-1\right)\left(n+1\right)\)là tích của 3 số liên tiếp nên tích này chia hết cho 2 và 3
Mà \(\left(2;3\right)=1\)\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮\left(2\cdot3\right)=6\)
\(\Rightarrow5n\left(n-1\right)\left(n+1\right)⋮\left(5\cdot6\right)=30\)(2)
Từ (1) và (2) \(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n+2\right)\left(n-2\right)+5n\left(n-1\right)\left(n+1\right)⋮30\)
Hay \(n^5-n⋮30\)
b) \(n^4-10n^2+9\)
\(=n^4-n^2-9n^2+9\)
\(=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left(n^2-9\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Đến đây làm nốt nhá :)