K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=n^2+6n+9-n^2+2n-1=8n+8⋮8\)

b: \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=n^2+12n+36-n^2+12n-36=24n⋮24\)

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

24 tháng 6 2018

6   \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)

vì n,n-1 là 2 số nguyên lien tiếp  \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)

  n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)

\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)

7   \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)

\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)

\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)

\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)

\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

22 tháng 10 2017

4.a)n2(n+1)+2n(n+1)=(n+1)(n2+2n)=n(n+1)(n+2)

n,(n+1),(n+2) là ba số nguyên liên tiếp nên chia hết cho 2 và 3

\(\Rightarrow\)n(n+1)(n+2) chia hết cho 6

22 tháng 10 2017

4 Chứng minh rằng:

a)\(n^2+\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6

Ta có:

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=n^3+3n^2+2n\)

\(=n\left(n^2+3n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

Ta thấy n , n+1 và n+2 là ba số tự nhiên liên tiếp

=> n(n+1) (n+2)\(⋮\)6

=> đpcm

b)\(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8

Ta có:

\(\left(2n-1\right)^3-\left(2n-1\right)\)

\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)

\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]\)

\(=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)

\(=\left(2n-1\right).2\left(n-1\right).2n\)

\(=4n\left(2n-1\right)\left(n-1\right)\)

=>\(4n\left(2n-1\right)\left(n-1\right)⋮4\left(1\right)\)

Mà(2n-1)(n-1)=(n+n-1)(n-1)

=>\(\left(2n-1\right)\left(n-1\right)⋮2\left(2\right)\)

Từ (1) và (2)=> Đpcm

c)\(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24

Câu hỏi của Ngoc An Pham - Toán lớp 8 | Học trực tuyến

Chúc bạn học tốt!^^

10 tháng 9 2017

\(a.\left(x^3-16x\right)=0\)

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-4=0\\x+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=4\\x=-4\end{cases}}}\)

Uầy lười lm waa

10 tháng 9 2017

. Hãy nhiệt tình lên :>> Chúng ta là công dân cùng một nước,phải giúp đỡ nhau a~~~

23 tháng 6 2019

5. Ta có: a(a - 1) - (a + 3)(a + 2) = a2 - a - a2 - 2a - 3a - 6

           = -6a - 6 = -6(a + 1) \(⋮\)6

<=> -6(a + 1) \(⋮\)\(\forall\)\(\in\)Z

<=> a(a - 1) - (a + 3)(a + 2) \(⋮\) 6 \(\forall\)\(\in\)Z

6. Thay x = 99 vào biểu thức A, ta có:

A = 995 - 100.994 + 100. 993 - 100.992 + 100 . 99 - 9

A = 995 - (99 + 1).994 + (99 + 1).993 - (99 + 1).992 + (99 + 1).99 - 9

A = 995 - 995 - 994 + 994 + 993 - 993 - 992 + 992 + 99 - 9

A = 99 - 9 

A = 90

Vậy ....

Bài 3:

(3x-1)(2x+7)-(x+1)(6x-5)=16.

=> 6x2+21x-2x-7-(6x2-5x+6x-5)=16

=>  6x2+21x-2x-7-6x2+5x-6x+5=16

=> 18x-2=16

=> 18x=16+2

=> 18x=18

=> x=1

Bài 4:

ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6=6\left(n+1\right)⋮6\)

⇔6(n+1) chia hết cho 6 với mọi n là số nguyên

⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên

vậy n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên (đpcm)

Bài 6:

\(A=x^5-100x^4+100x^3-100x^2+100x-9\)

\(\Rightarrow A=x^5-\left(99+1\right)x^4+\left(99+1\right)x^3-\left(99+1\right)x^2+\left(99+1\right)x-9\)

\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)

\(\Rightarrow A=\left(x^5-99x^4\right)-\left(x^4-99x^3\right)+\left(x^3-99x^2\right)-\left(x^2-99x\right)+x-9\)

\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)

\(\Rightarrow A=\left(x-99\right)\left(x^4-x^3+x^2-x\right)+x-9\)

Thay 99=x, ta được:

\(A=\left(x-x\right)\left(x^4-x^3+x^2-x\right)+x-9\)

\(\Rightarrow A=x-9\)

Thay x=99 ta được:

\(A=99-9=90\)

18 tháng 9 2017

bài 2 phần a

x^3-0,25x = 0

x*(x2 - 0,25)=0

=> TH1: x=0

TH2 : x2 - 0.25=0

(x-0,5)(x+0,5)=0

=> x=0.5

     x=-0.5

Vậy x=0  , x=+ - 5

sai thì thông cảm

20 tháng 8 2018

\(x\left(x-1\right)-3x+3=0\)

<=> \(x\left(x-1\right)-3\left(x-1\right)=0\)

<=> \(\left(x-3\right)\left(x-1\right)=0\)

<=> \(\hept{\begin{cases}x-3=0\\x-1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\x=1\end{cases}}\)

\(3x\left(x-2\right)+10-5x=0\)

<=> \(3x\left(x-2\right)+5\left(2-x\right)=0\)

<=> \(3x\left(x-2\right)-5\left(x-2\right)=0\)

<=> \(\left(3x-5\right)\left(x-2\right)=0\)

<=> \(\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)

học tốt