\(A=1^3+2^3+3^3+...+99^3+100^3\)

   

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

\(a,\)Biết \(B=\frac{100.101}{2}=50.101\)

\(A=1^3+2^3+3^3+...+99^3+100^3\)

Xét \(A=\left(1^3+100^3\right)+\left(2^3+99^3\right)+...+\left(49^3+52^3\right)+\left(50^3+51^3\right)\)

\(\Rightarrow A=101.\left(1+100+100^2\right)+101.\left(2^2+2.99+99^2\right)+...+101\left(50^2+50.51+51^2\right)\)

\(\Rightarrow A=101\left(1+100+100^2+2^2+2.99+99^2+...+50^2+50.51+51^2\right)⋮101\)

Xét\(A=\left(1^3+99^3\right)+\left(2^3+98^3\right)+...+\left(49^3+51^3\right)+50^3\)

\(\Rightarrow A=100\left(1^2+1.99+99^2\right)+100\left(2^2+2.98+98^2\right)+...+100\left(49^2+49.51+51^2\right)+100.50.25⋮50\)

Vậy \(A⋮101.50=5050=B\)

Làm tương tự với câu b

28 tháng 6 2017

Sửa đề: \(\dfrac{100+\dfrac{99}{2}+\dfrac{98}{3}+...+\dfrac{1}{100}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{101}}-2\)

\(=\dfrac{\left(\dfrac{99}{2}+1\right)+\left(\dfrac{98}{3}+1\right)+...+\left(\dfrac{1}{100}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{101}}-2\)

\(=\dfrac{\dfrac{101}{2}+\dfrac{101}{3}+...+\dfrac{101}{100}+\dfrac{101}{101}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}+\dfrac{1}{101}}-2\)

\(=\dfrac{101\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}+\dfrac{1}{101}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}+\dfrac{1}{101}}-2\)

\(=101-2=99\)

Vậy...

28 tháng 6 2017

Nguyễn Huy Tú TẠI SAO PHAỈ SỬA ĐỀ NHỈ

3 tháng 8 2017

Ta có :

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)

Ta có:

\(\frac{1}{\sqrt{x}+\sqrt{x-1}}=\frac{\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}=\sqrt{x}-\sqrt{x-1}\)

Do đó:

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)

\(\Leftrightarrow A=\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+\sqrt{3}-\sqrt{4}+...+\sqrt{n-1}+\sqrt{n}\)

\(\Leftrightarrow A=\sqrt{n}-1\left(dpcm\right)\)

11 tháng 3 2017

121287370050 nha

1 tháng 3 2017

Bài này còn cần bài giải không b

30 tháng 3 2017

lấy máy tính bấm đi bạn

27 tháng 10 2022

a: \(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\cdot...\cdot\left(3^{1024}+1\right)}{8}\)

\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\cdot...\cdot\left(3^{1024}+1\right)}{8}\)

\(=\dfrac{3^{2048}-1}{8}\)

b: \(=100+99+98+97+...+50+49\)

Số số hạng là (100-49):1+1=100-48=52 số

Tổng là (100+49)*52/2=149*26=3874

c: \(=x^2-2x+1+x^2-4-x^3-9x^2-27x-27\)

\(=-x^3-7x^2-29x-30\)