K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

20n+16n-3n-1  \(⋮\)321

vì 323=17.19

Ta thấy : 20n+16n-3n-1

            =(20n-1) + (16n-3n)

             20n-1\(⋮\)19 với n chẵn

 \(\Rightarrow\)(20n-1) + ( 16-3n)\(⋮\)19      (1)

Mặt khác : 20n+16n-3n-1

              =( 20n-3n) + ( 16n-1)

               20n-3n\(⋮\)17 với n chẵn 

               16n-1  \(⋮\)17 với n chẵn 

\(\Rightarrow\)(20n-3n) + ( 16n-1) \(⋮\)17     (2)

Từ (1) và (2) \(\Rightarrow\)20n+16n-3n-1 \(⋮\)17\(\times\)19

\(\Rightarrow\)20n+16n-3n-1 \(⋮\)323 ( đpcm)

30 tháng 1 2021

Ta có: A = 20n + 16n - 3n - 1

Do n chẵn => n = 2k

Khi đó: A = 202k + 162k - 32k - 1

A = (202k - 1) + (256k - 9k

Do 202k - 1 \(⋮\)(20 - 1) = 19

 256k - 9k \(⋮\)(256 - 9) = 247 \(⋮\)19

=> A \(⋮\)19 (1)

Mặt khác, ta lại có: 

A = 202k + 162k - 32k - 1 = (202k - 32k) + (256k - 1)

Do 202k - 32k \(⋮\)(20 - 3) = 17

256k - 1 \(⋮\)(256 - 1)= 255 \(⋮\)17

=> A  \(⋮\)17 (2)

Mà (17; 19) = 1 => A \(⋮\)17.19 = 323 (đpcm)

30 tháng 1 2021

Vì n chẵn 

Đặt n = 2k (k \(\inℕ\))

Khi đó A = 20n + 16n - 3n - 1

= 202k + 162k - 32k - 1 

= 400k + 256k - 9k - 1

= (400k - 1) + (256k - 9k)

= (400 - 1)(400k - 1 + 400k - 2 + ... + 1) + (256 - 9)(256k - 1 + 256k - 2.9 + ... + 9k - 1)

= 399(400k - 1 + 400k - 2 + ... + 1) + 247(256k - 1 + 256k - 2.9 + ... + 9k - 1)

= 19.21.(400k - 1 + 400k - 2 + ... + 1) + 19.13(256k - 1 + 256k - 2.9 + ... + 9k - 1)

= 19.(21.(400k - 1 + 400k - 2 + ... + 1) + 13(256k - 1 + 256k - 2.9 + ... + 9k - 1)) \(⋮\)19 (1)

Lại có A = 400k + 256k - 9k - 1 

= (400k - 9k) + (256k - 1)

= (400 - 9)(400k - 1 + 400k - 2.9 + .... + 9k - 1) + (256 - 1)(256k - 1 + 256k - 2 + .... + 1)

= 391(400k - 1 + 400k - 2.9 + .... + 9k - 1) + 255(256k - 1 + 256k - 2 + .... + 1)

= 17.23(400k - 1 + 400k - 2.9 + .... + 9k - 1) + 17.15(256k - 1 + 256k - 2 + .... + 1)

= 17.(23(400k - 1 + 400k - 2.9 + .... + 9k - 1) + 15(256k - 1 + 256k - 2 + .... + 1)) \(⋮\)17 (2)

Lại có ƯCLN(17;19) = 1 (3)

Từ (1)(2)(3) => A \(⋮17.19=323\)(ĐPCM)

17 tháng 8 2021

\(323=17.19\)

+) \(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)

\(20^n-1=20^n-1^n⋮\left(20-1\right)=19\)

\(16^n-3^n⋮\left(16+3\right)=19\) (vì n chẵn)

\(\Rightarrow20^n+16^n-3^n-1⋮19\) 

+) \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)

\(20^n-3^n⋮\left(20-3\right)=17\)

\(16^n-1=16^n-1^n⋮\left(16+1\right)=17\) (vì n chẵn)

\(\Rightarrow20^n+16^n-3^n-1⋮17\)

Mà \(\left(17,19\right)=1\)

\(\Rightarrow20^n+16^n-3^n-1⋮\left(17.19\right)=323\)

17 tháng 8 2021

thank you yeu

7 tháng 8 2020

323 =17.19.

Ta có:  \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)

\(20^n-3^n⋮17,16^n-1⋮17\)(vì n chẵn)

\(\Rightarrow20^n+16^n-3^n-1⋮17\)(1)

Tương tự:

\(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)

\(20^n-1⋮19,16^n-3^n⋮19\)(vì n chẵn)

\(\Rightarrow20^n+16^n-3^n-1⋮19\)(2)

Từ (1) và (2) \(\Rightarrow20^n+16^n-3^n-1⋮\left(17,19\right)=323\)(đpcm)