K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

Gọi d là ước chung của 5n+1 và 6n+1.

 5n+1 chia hết cho d; 6n+1 chia hết cho d.

=> 5n+1 - 6n+1 chia hết cho d.

=> 30n+6 - 30n+5 chia hết cho d.

=>  1 chia hết cho d.

=> d = 1 và ƯCLN(1) = ƯC(5n+1;6n+1) = 1

Vì 5n+1 và 6n+1 có ước chung lớn nhất là 1 => 5n+1 và 6n+1 là 2 số nguyên tố cùng nhai!

7 tháng 11 2017

goi d là UCLL của 5n+1 và 6n+1

=>5n+1 chai hết cho d=> 6(5n+1) chia hết cho d <=> 30n+6 chia hết cho d

  6n+1 chia hết cho d=> 5(6n+1) chia hết cho d <=> 30n+5 chia hết cho d

=> 30n+6-30n-5 chia hết cho d

<=> 1 chia hết cho d=> d bằng 1

d bằng 1 => 5n+1 và 6n+1 là 2 snt cùng nhau

nhớ tk cho mk nha, ai tk cho mk thì mk tk lại cho

5 tháng 1 2016

Ta có : k là ƯCLN của 7n + 10 và 5n + 7 
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k 
Hay 5(7n + 10 ) và 7(5n + 7 ) 
      35n + 50 và 35n + 49 chia hết cho k 
=> ĐPCM 

Hai bài kia bạn làm tương tư nhé , chúc may mắn 

26 tháng 11 2018

a) Gọi ƯCLN(4n+1;6n+1) = d

=>\(\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\)=>\(\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}\)

<=> 12n + 3 - 12n -2 \(⋮\)d

<=> 3 - 2  \(⋮\)d  (trừ 12n)

<=> d = 1

Vậy ƯCLN(4n+1;6n+1) = 1 hay với mọi số tự nhiên n thì 4n+1 và 6n+1 là hai số nguyên tố cùng nhau

b) Gọi ƯCLN(5n+4;6n+5) = d

=>\(\hept{\begin{cases}5n+4⋮d\\6n+5⋮d\end{cases}}\)=>\(\hept{\begin{cases}6\left(5n+4\right)⋮d\\5\left(6n+5\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}30n+24⋮d\\30n+25⋮d\end{cases}}\)

<=>30n + 25 - 30n + 24 \(⋮\)d

<=>25 - 24 \(⋮\)(bỏ đi 30n)

<=> d = 1

Vậy ƯCLN(5n+4;6n+5) = 1 hay 5n + 4 và 6n + 5 là 2 số nguyên tố cùng nhau

16 tháng 1 2022

Giả sử:

\(\left\{{}\begin{matrix}\left(5n+1\right)⋮a\\\left(6n+1\right)⋮a\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(30n+6\right)⋮a\\\left(30n+5\right)⋮a\end{matrix}\right.\\ \Rightarrow\left[\left(30n+6\right)-\left(30n+5\right)\right]⋮a\\ \Rightarrow1⋮a\\ \Rightarrow a=\pm1\)

Vậy 2 số trên là 2 số nguyên tố cùng nhau 

30 tháng 10 2016

bạn chờ mình chút

30 tháng 10 2016

a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra: 
3n+4 chia hết cho d ; 2n+3 chia hết cho d 
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d      (1)
Lại có : 3.(2n+3) :d 
=> 6n+9 : d      (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d

=> 1 : d

=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha

13 tháng 11 2016

Gọi d là \(ƯCLN\left(5n+2,5n+3\right)\)

\(\Rightarrow\begin{cases}5n+2⋮d\\5n+3⋮d\end{cases}\)

\(\Rightarrow\left(5n+3\right)-\left(5n+2\right)⋮d\)

\(\Rightarrow5n+3-5n-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\RightarrowƯCLN\left(5n+2,5n+3\right)=1\)

Vậy 5n + 2 và 5n + 3 là hai số nguyên tố cùng nhau .

b, Gọi d là \(ƯCLN\left(7n+1,6n+1\right)\)

\(\Rightarrow\begin{cases}7n+1⋮d\\6n+1⋮d\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}42n+6⋮d\\42n+7⋮d\end{cases}\)

\(\Rightarrow\left(42n+7\right)-\left(42n+6\right)⋮d\)

\(\Rightarrow42n+7-42n-6⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\RightarrowƯCLN\left(7n+1,6n+1\right)=1\)

Vậy 7n + 1 và 6n + 1 là hai số nguyên tố cùng nhau .

c, Gọi d là \(ƯCLN\left(5n+1,4n+1\right)\)

\(\Rightarrow\begin{cases}5n+1⋮d\\4n+1⋮d\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}20n+4⋮d\\20n+5⋮d\end{cases}\)

\(\Rightarrow\left(20n+5\right)-\left(20n+4\right)⋮d\)

\(\Rightarrow20n+5-20n-4⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\RightarrowƯCLN\left(5n+1,4n+1\right)=1\)

Vậy 5n + 1 và 4n + 1 là hai số nguyên tố cùng nhau

13 tháng 11 2016

98

 

21 tháng 8 2015

đ, gọi d là ước nguyên tố chung của 2n + 1 và 6n + 5

ta có : 2n + 1 : hết cho d ; 6n + 5 : hết cho d

=> 3( 2n + 1) : hết cho d : 6n + 5 : hết cho d

=> ( 6n + 5) - 3( 2n + 1) : hết cho d

=> 2 : hết cho d

=> d = 2

mà 2n + 1 ko : hết cho d

=> d = 1( dpcm)

21 tháng 8 2015

a) Goi d la UCLN ( n ; n+1 )                       b) Goi d la UCLN ( 3n+2 ;5n+3)

n+1 chia het cho d                                             3n+2 chia het cho d-->5(3n+2) chia het cho d

n chia het cho d                                                 5n+3 chia het cho d-->3(5n+3) chia het cho d

-> n+1-n chia het cho d                                 ->5(3n+2)-3(5n+3) chia het cho d

-> 1 chia het cho d                                        -> 15n+10-15n-9 chia het cho d

Va n va n+1 la hai so ngto cung nhau            - -> 1 chia het cho d

                                                                      Vay 3n+2 va 5n+3 chia het cho d

c) Goi d la UCLN (2n+1;2n+3)                                 d) Goi d la UCLN (2n+1;6n+5)

2n+1 chia het cho d                                                2n+1 chia het cho d-->3(2n+1) chiA het cho d

2n+3 chia het cho d--> 2n+1+2 chia het cho d          6n+5 chia het cho d

->2 chia het cho d                                               ->6n+5-3(2n+1) chia het cho d

--> d \(\in\)U (2)-> d\(\in\) {1;2}                                     -> 6n+5-6n-3 chia het cho d

d=2 loai vi 2n+1 khong chia het cho 2-> d=1         ->2 chia het  cho d

Vay 2n+1 va 2n+3 la hai so ng to cung nhau         --> d \(\in\)U (2)-> d\(\in\) {1;2} 

                                                                           d=2 loai vi 5n+3 k chia het cho 2-->d=1

                                                                       vay 2n+1 va 6n+5 la2 so ng to cung nhAU